Andreas Horn | |
---|---|
![]() | |
Born | Freiburg, Germany |
Alma mater | University of Freiburg |
Known for | Deep Brain Stimulation, functional neuroimaging |
Awards | German Research Foundation Heinz Maier-Leibnitz-Preis, Clarivate Highly Cited Researchers |
Scientific career | |
Fields | Neuroimaging neurology |
Institutions | Harvard Medical School, Brigham & Women's Hospital, Massachusetts General Hospital |
Andreas Horn is a German neuroscientist and Associate Professor of Neurology at Harvard Medical School and Mass General Brigham. His research has focused on mapping deep brain stimulation outcomes onto networks of the human brain. Horn's work has been featured by media outlets such as CNN, [1] Newsweek [2] or Fox News [3] and he has been considered among the 'World's Highly Cited Researchers' by Clarivate. [4]
Horn studied medicine at University of Freiburg and received his MD in 2012. He then pursued a PhD in Medical Neurosciences at Charité Berlin which he completed in 2016. After working in several postdoctoral roles, he was enrolled into the Emmy Noether Program by the German Research Foundation and started a laboratory at Charité in 2018. In 2022, he became Associate Professor of Neurology at Harvard Medical School and affiliated with Brigham and Women's and Massachusetts General Hospital.
Horn is known for his work in brain circuit mapping and neuromodulation. He developed methods to localize deep brain stimulation electrodes and to estimate networks stimulated by them. His research has also explored how brain stimulation sites and lesions correlate with specific brain circuits, providing insights into various neurological and psychiatric conditions such as Parkinson’s disease, [5] obsessive-compulsive-disorder, [6] Alzheimer's Disease, [7] and dystonia. [8] He and his team developed methods such as Lead-DBS and subcortical electrophysiology mapping and DBS network mapping. [9]
Deep brain stimulation (DBS) is a surgical procedure that implants a neurostimulator and electrodes which sends electrical impulses to specified targets in the brain responsible for movement control. The treatment is designed for a range of movement disorders such as Parkinson's disease, essential tremor, and dystonia, as well as for certain neuropsychiatric conditions like obsessive-compulsive disorder (OCD) or neurological disorders like epilepsy. The exact mechanisms of DBS are complex and not entirely clear, but it is known to modify brain activity in a structured way.
Helen S. Mayberg, is an American neurologist. Mayberg is known in particular for her work delineating abnormal brain function in patients with major depression using functional neuroimaging. This work led to the first pilot study of deep brain stimulation (DBS), a reversible method of selective modulation of a specific brain circuit, for patients with treatment-resistant depression. As of August 2019, she has published 211 original peer-reviewed articles, 31 books and book chapters, and acted as principal investigator on 24 research grants. Mayberg is coinventor with Andres Lozano of “Method for Treating Depression Mood Disorders and Anxiety Disorders using Neuromodulation,” US patent 2005/0033379A1. St. Jude Medical Neuromodulation licensed her intellectual property to develop Subcallosal Cingulate Deep Brain Stimulation for Treatment-Resistant Unipolar and Bipolar Depression for the treatment of severe depression. As of 2018, Mayberg holds positions as Professor of Neurology and Neurosurgery and Professor, Psychiatry and Neuroscience, both at Mount Sinai Medical School, and Professor of Psychiatry, Emory University; Emory University Hospital. Since 2018, she has served as Director, Nash Family Center for Advanced Circuit Therapeutics at the Icahn School of Medicine at Mount Sinai.
The ventral posterior nucleus is the somatosensory relay nucleus in thalamus of the brain.
A connectome is a comprehensive map of neural connections in the brain, and may be thought of as its "wiring diagram". An organism's nervous system is made up of neurons which communicate through synapses. A connectome is constructed by tracing the neuron in a nervous system and mapping where neurons are connected through synapses.
The internal globus pallidus is one of the two subcortical nuclei that provides inhibitory output in the basal ganglia, the other being the substantia nigra pars reticulata. Together with the external globus pallidus (GPe), it makes up one of the two segments of the globus pallidus, a structure that can decay with certain neurodegenerative disorders and is a target for medical and neurosurgical therapies. The GPi, along with the substantia nigra pars reticulata, comprise the primary output of the basal ganglia, with its outgoing GABAergic neurons having an inhibitory function in the thalamus, the centromedian complex and the pedunculopontine complex.
Ablative brain surgery is the surgical ablation by various methods of brain tissue to treat neurological or psychological disorders. The word "Ablation" stems from the Latin word Ablatus meaning "carried away". In most cases, however, ablative brain surgery does not involve removing brain tissue, but rather destroying tissue and leaving it in place. The lesions it causes are irreversible. There are some target nuclei for ablative surgery and deep brain stimulation. Those nuclei are the motor thalamus, the globus pallidus, and the subthalamic nucleus.
Neurostimulation is the purposeful modulation of the nervous system's activity using invasive or non-invasive means. Neurostimulation usually refers to the electromagnetic approaches to neuromodulation.
Neuromodulation is "the alteration of nerve activity through targeted delivery of a stimulus, such as electrical stimulation or chemical agents, to specific neurological sites in the body". It is carried out to normalize – or modulate – nervous tissue function. Neuromodulation is an evolving therapy that can involve a range of electromagnetic stimuli such as a magnetic field (rTMS), an electric current, or a drug instilled directly in the subdural space. Emerging applications involve targeted introduction of genes or gene regulators and light (optogenetics), and by 2014, these had been at minimum demonstrated in mammalian models, or first-in-human data had been acquired. The most clinical experience has been with electrical stimulation.
Alim Louis Benabid is a French-Algerian emeritus professor, neurosurgeon and member of the French Academy of Sciences, who has had a global impact in the development of deep brain stimulation (DBS) for Parkinson's disease and other movement disorders. He became emeritus professor of biophysics at the Joseph Fourier University in Grenoble in September 2007, and chairman of the board of the Edmond J. Safra Biomedical Research Center in 2009 at Clinatec, a multidisciplinary institute he co-founded in Grenoble that applies nanotechnologies to neurosciences.
Ali R. Rezai is an Iranian-born American neurosurgeon and neuroscientist. His work and research has focused on neuromodulation treatments for patients with neurological and mental health conditions, including neuromodulation techniques such as deep brain stimulation (DBS) through brain chip implants to treat Parkinson's disease tremors, obsessive–compulsive disorder, Alzheimer's disease, traumatic brain injury, spinal cord injury, and addiction. Recent research since 2020 has focused on deep brain stimulation for addiction treatment, as well as focused ultrasound to treat tremor, addiction and Alzheimer's disease.
Sridevi Sarma is an American biomedical and electrical engineer known for her work in applying control theory to improve therapies for neurological disorders such as Parkinson's disease and epilepsy. She is vice dean for graduate education of the Johns Hopkins University Whiting School of Engineering, associate director of the Johns Hopkins Institute for Computational Medicine, and an associate professor in the Johns Hopkins Department of Biomedical Engineering.
Alberto Priori is an Italian neurologist, academic, and author. He is a Professor of Neurology at the University of Milan, Director of Neurology 1 Unit at San Paolo Hospital, and the Founder and Coordinator of Aldo Ravelli Center of the University of Milan. He also serves as President of the Neurophysiopatology Techniques Course, and Professor of Postgraduate Schools - Medicine, Healthcare, Dental Medicine at the same University.
Michael D. Fox is an American neurologist and Professor of Neurology at Harvard Medical School where he holds the Raymond D. Adams Distinguished Chair in Neurology and directs the Center for Brain Circuit Therapeutics at Brigham and Women's Hospital. His research has focused on resting state brain fMRI which uses spontaneous fluctuations in blood oxygenation to map brain networks including the default mode network. He developed the technique lesion network mapping to study the connectivity patterns of brain lesions to help understand the neuroanatomy of a diverse range of processes including addiction, criminality, blindsight, free will and religiosity. Fox has been considered among the "World's Most Influential Scientific Minds" by Thomson Reuters since 2014.
Adaptive deep brain stimulation (aDBS), also known as closed-loop deep brain stimulation (clDBS), is a neuro-modulatory technique currently under investigation for the treatment of neurodegenerative diseases.
Lesion network mapping is a neuroimaging technique that analyzes the connectivity pattern of brain lesions to identify neuroanatomic correlates of symptoms. The technique was developed by Michael D. Fox and Aaron Boes to understand the network anatomy of lesion induced neurologic and psychiatric symptoms that can not be explained by focal anatomic localization. Lesion network mapping applies a network-based approach to identify connected brain networks, rather than focal brain regions, that correlate with a specific symptom.
Andres M. Lozano is a Spanish-Canadian neurosurgeon and scientist known for his work in Deep Brain Stimulation and MR guided Focused Ultrasound Surgery. He holds the Alan & Susan Hudson Cornerstone Chair in Neurosurgery at the University Health Network Toronto and is a University Professor at the University of Toronto. His work has been covered by major international news publications including BBC, Scientific American, The Independent, The Globe and Mail and NPR. He is also leading the exclusive Canadian site (CAN-PRIME) for the Neuralink trial.
Hagai Bergman is an Israeli neuroscientist best known for his work on the basal ganglia and their involvement in movement disorders, especially Parkinson's disease. He is currently the Simone and Bernard Guttman Chair in Brain Research and Professor of Physiology in the Edmond and Lily Safra Center for Brain Sciences at the Hebrew University of Jerusalem.
Lead-DBS is an open-source toolbox for reconstructions and modeling of Deep Brain Stimulation electrodes based on pre- and postoperative MRI & CT imaging.
Patricia Limousin is a French neurologist recognized for her contributions to the treatment of movement disorders, particularly through deep brain stimulation (DBS). She earned her medical degree from the University of Grenoble and completed her PhD in neuroscience at the University of Lyon I in 1998, focusing on DBS of the subthalamic nucleus as a treatment for Parkinson's disease.
The dysfunctome is a proposed conceptual framework that describes a library of circuits that may become dysfunctional in the human brain as a consequence of various brain disorders. Analogous to terms like the genome, the proteome and the connectome the dysfunctome aims to map out how disruptions—of whichever nature—contribute to disease states and pathological signs or symptoms if specific brain circuits become dysfunctional.