Anne E. Giblin | |
---|---|
Alma mater | B.S.: Biology, Rensselaer Polytechnic Institute, Troy, NY, 1975 Ph.D.: Ecology, Boston University Marine Program, Woods Hole, MA, 1982 |
Awards | Phi Lambda Upsilon Chemical Honor Society, Aldo Leopold Leadership Fellowship 2001, American Association for the Advancement of Science Fellow 2013 |
Scientific career | |
Fields | ecosystem ecology, biogeochemistry, nutrient cycling |
Institutions | Ecosystem Center, Marine Biological Laboratory |
Website | https://www.mbl.edu/ecosystems/faculty/giblin/ |
Anne E. Giblin is a marine biologist who researches the cycling of elements nitrogen, sulfur, iron and phosphorus. She is a Senior Scientist and Acting Director of the Ecosystem Center at the Marine Biological Lab.
Giblin earned her Bachelor of Science in Biology at Rensselaer Polytechnic Institute, in Troy, NY in 1975. She went on to earn her Ph.D. in ecology at the Boston University Marine Program, in Woods Hole, MA, in 1982. [1] Giblin did her graduate work in the Massachusetts Great Sippewissett Marsh, studying trace metal solubility in salt marsh sediments which were contaminated with sewage sludge. [2]
Gilbin's research primarily focuses on the cycling of elements such as nitrogen, sulfur, iron, and phosphorus in the environment. The majority of Giblin's research is focused around the circulation of these elements in different redox (reduction-oxidation) conditions in soils and sediments. Another dominant theme in her work is to comprehend if sediment processes act as a buffer or act to exacerbate anthropogenic inputs of nutrients to the environment. For example, much of her work focuses on the nitrogen cycle, and the effects ecosystems may have if there are high nutrient inputs from wastewater or fertilizer. [3]
Gilbin is the lead PI of the Plum Island Ecosystems Long Term Ecological Research Site (PIE LTER). The Plum Island Ecosystems is composed of estuaries and watersheds located in northeastern Massachusetts. The three rivers that make up the ecosystem are the Ipswich River, Parker River, and the Rowley River. [4] The goal of this research site is to develop an understanding of the long-term effect's sea-level rise linked to climate change may have on the watershed. The knowledge gathered through this research site is used in policy and land management with the initiative to protect the natural resources of the coastal zone. [5]
Giblin is also works at the Arctic Long-Term Ecological Research (ARC LTER). The project is located on the north slope of Alaska. Similar to PIE LTER, this project was created to study anthropogenic as well as natural environmental change on ecosystems. Giblin conducted a long-term fertilization experiment in a pair of lakes and observed their recovery, to anticipate the effects of what will happen with a longer growing season. Data from this project could inform the management of the landscape. [6]
Giblin has also worked have had to do with acid deposition on the sulfur cycle of lakes, the movement of trace metals in salt marsh sediments, nitrogen inputs and hydrologic disturbances to estuaries and Arctic lakes. [7]
Grants: Giblin's research is supported by numerous grants from the National Science Foundation and the USGS [11] [12]
Giblin's publications include the following:
An ecosystem consists of all the organisms and the physical environment with which they interact. These biotic and abiotic components are linked together through nutrient cycles and energy flows. Energy enters the system through photosynthesis and is incorporated into plant tissue. By feeding on plants and on one another, animals play an important role in the movement of matter and energy through the system. They also influence the quantity of plant and microbial biomass present. By breaking down dead organic matter, decomposers release carbon back to the atmosphere and facilitate nutrient cycling by converting nutrients stored in dead biomass back to a form that can be readily used by plants and microbes.
The Marine Biological Laboratory (MBL) is an international center for research and education in biological and environmental science. Founded in Woods Hole, Massachusetts, in 1888, the MBL is a private, nonprofit institution that was independent for most of its history, but became officially affiliated with the University of Chicago on July 1, 2013. It also collaborates with numerous other institutions.
A biogeochemical cycle, or more generally a cycle of matter, is the movement and transformation of chemical elements and compounds between living organisms, the atmosphere, and the Earth's crust. Major biogeochemical cycles include the carbon cycle, the nitrogen cycle and the water cycle. In each cycle, the chemical element or molecule is transformed and cycled by living organisms and through various geological forms and reservoirs, including the atmosphere, the soil and the oceans. It can be thought of as the pathway by which a chemical substance cycles the biotic compartment and the abiotic compartments of Earth. The biotic compartment is the biosphere and the abiotic compartments are the atmosphere, lithosphere and hydrosphere.
Detritivores are heterotrophs that obtain nutrients by consuming detritus. There are many kinds of invertebrates, vertebrates, and plants that carry out coprophagy. By doing so, all these detritivores contribute to decomposition and the nutrient cycles. Detritivores should be distinguished from other decomposers, such as many species of bacteria, fungi and protists, which are unable to ingest discrete lumps of matter. Instead, these other decomposers live by absorbing and metabolizing on a molecular scale. The terms detritivore and decomposer are often used interchangeably, but they describe different organisms. Detritivores are usually arthropods and help in the process of remineralization. Detritivores perform the first stage of remineralization, by fragmenting the dead plant matter, allowing decomposers to perform the second stage of remineralization.
Mangrove forests, also called mangrove swamps, mangrove thickets or mangals, are productive wetlands that occur in coastal intertidal zones. Mangrove forests grow mainly at tropical and subtropical latitudes because mangroves cannot withstand freezing temperatures. There are about 80 different species of mangroves, all of which grow in areas with low-oxygen soil, where slow-moving waters allow fine sediments to accumulate.
The Long Term Ecological Research Network(LTER) consists of a group of over 1800 scientists and students studying ecological processes over extended temporal and spatial scales. Twenty-eight LTER sites cover a diverse set of ecosystems. It is part of the International Long Term Ecological Research Network (ILTER). The project was established in 1980 and is funded by the National Science Foundation. Data from LTER sites is publicly available in the Environmental Data Initiative repository and findable through DataONE search.
F. Stuart Chapin III is a professor of Ecology at the Department of Biology and Wildlife of the Institute of Arctic Biology, University of Alaska. He was President of the Ecological Society of America (ESA) from August 2010 until 2011.
Human impact on the nitrogen cycle is diverse. Agricultural and industrial nitrogen (N) inputs to the environment currently exceed inputs from natural N fixation. As a consequence of anthropogenic inputs, the global nitrogen cycle (Fig. 1) has been significantly altered over the past century. Global atmospheric nitrous oxide (N2O) mole fractions have increased from a pre-industrial value of ~270 nmol/mol to ~319 nmol/mol in 2005. Human activities account for over one-third of N2O emissions, most of which are due to the agricultural sector. This article is intended to give a brief review of the history of anthropogenic N inputs, and reported impacts of nitrogen inputs on selected terrestrial and aquatic ecosystems.
Soil respiration refers to the production of carbon dioxide when soil organisms respire. This includes respiration of plant roots, the rhizosphere, microbes and fauna.
Deborah K. Steinberg is an American Antarctic biological oceanographer who works on interdisciplinary oceanographic research programs. Steinberg's research focuses on the role that zooplankton play in marine food webs and the global carbon cycle, and how these small drifting animals are affected by changes in climate.
Niwot Ridge is an alpine ecology research station located 65 km northwest of Denver in north-central Colorado. It is on the Front Range of the southern Rocky Mountains and lies within the Roosevelt National Forest. Niwot Ridge is 2,900 metres (9,500 ft) high.
Sarah E. Hobbie is an American ecologist, currently at the University of Minnesota, a National Academy of Sciences Fellow for Ecology, Evolution and Behavior in 2014 and a formerly Minnesota McKnight Land-Grant Professor.
Changing climate conditions are amplified in polar regions and northern high-latitude areas are projected to warm at twice the rate of the global average. These modifications result in ecosystem interactions and feedbacks that can augment or mitigate climatic changes. These interactions may have been important through the large climate fluctuations since the glacial period. Therefore it is useful to review the past dynamics of vegetation and climate to place recent observed changes in the Arctic into context. This article focuses on northern Alaska where there has been much research on this theme.
The viral shunt is a mechanism that prevents marine microbial particulate organic matter (POM) from migrating up trophic levels by recycling them into dissolved organic matter (DOM), which can be readily taken up by microorganisms. The DOM recycled by the viral shunt pathway is comparable to the amount generated by the other main sources of marine DOM.
Christine Goodale is an ecosystem ecologist and an Associate Professor in the Department of Ecology and Evolutionary Biology at Cornell University. Goodale conducts research that studies the cycling of water, carbon, nitrogen and other nutrients through forest ecosystems.
Tana Elaine Wood is a biogeochemist and ecosystem scientist with a focus in land-use and climate change. Her research is focused on looking into how these issues affect tropical forested ecosystems and particularly focuses on soil science and below ground research efforts.
Toolik Lake is an Arctic lake located within the North Slope Borough, Alaska. It is in a remote wilderness area managed by the Bureau of Land Management accessed by the Dalton Highway. It is 130 mi (210 km) south of Prudhoe Bay in the northern foothills of the Brooks Range. The name is derived from the Iñupiat word tutlik, meaning yellow-billed loon.
Carol Arlene Johnston is a Professor Emeritus in the Department of Natural Resource Management at South Dakota State University. Johnston is known for her research on beaver ecology and wetlands.
Michelle Cailin Mack is an ecologist working on the connections between plants and climate in polar regions. She is a fellow of the Ecological Society of America and the American Geophysical Union. She currently holds the title of Regent's Professor at Northern Arizona University.
Merritt Turetsky is an American ecosystem ecologist and a professor at the University of Colorado Boulder. She currently serves as the Director of Arctic Security for the University of Colorado. She served as the first woman Director of the Institute for Arctic and Alpine Research (INSTAAR) from 2019-2023. Her research considers fire regimes, climate change and biogeochemical cycling in Arctic wetlands. Turetsky is a member of the Permafrost Action Team (SEARCH), a group of scientists who translate and deliver science to decision-makers.