Anti-sidereal time

Last updated

Anti-sidereal time and extended-sidereal time are artificial time standards used to analyze the daily variation in the number of cosmic rays received on Earth. Anti-sidereal time has about 364.25 days per year, one day less than the number of days in a year of solar time, 365.25. Thus each anti-sidereal day is longer than a solar day (24 hr) by about four minutes or 24 hr 4 min. Extended-sidereal time has about 367.25 days per year, one day more than the number of days in a year of sidereal time, 366.25. Thus each extended-sidereal day is shorter than a sidereal day (23 hr 56 min) by about four minutes or 23 hr 52 min. All years mentioned have the same length. [1]

Contents

Amplitude modulation sidebands

Cosmic rays received on Earth exhibit daily variations in amplitude in solar time due to the distribution of cosmic rays in the inner heliosphere and to the Compton-Getting effect caused by Earth's orbital velocity around the Sun. Other daily variations in amplitude in sidereal time are caused by the anisotropy in the direction from which cosmic rays are received relative to the plane of our galaxy, the Milky Way. Both are contaminated by an annual seasonal variation. The daily solar variation is amplitude modulated by the seasonal variation of one cycle/year, producing sidebands on either side of the solar frequency, about 365 cycles/year, of 365−1=364 cycles/year and 365+1=366 cycles/year. Similarly, an annual amplitude modulation of one cycle/year of the sidereal frequency, about 366 cycles/year, produces sidebands of 366−1=365 cycles/year and 366+1=367 cycles/year. The upper sideband of the solar frequency contaminates the amplitude of the sidereal frequency, while the lower sideband of the sidereal frequency contaminates the amplitude of the solar frequency. Because the magnitudes of the two sidebands produced by amplitude modulation of the solar frequency are the same and no known natural phenomenon recurs at 364 cycles/year, the spurious amplitude at the sidereal frequency can be corrected by subtracting any signal present at the anti-sidereal frequency. Similarly, the spurious amplitude in the solar frequency of 365 cycles per year can be corrected by subtracting any signal present at the extended-sidereal frequency of 367 cycles per year. [2] [3] [4]

See also

Related Research Articles

Metonic cycle

The Metonic cycle or enneadecaeteris is a period of approximately 19 years after which the phases of the moon recur at the same time of the year. The recurrence is not perfect, and by precise observation the Metonic cycle defined as 235 synodic lunar months is just 1 hour, 27 minutes and 33 seconds longer than 19 tropical years. Meton of Athens, in the 5th century BC, judged the cycle to be a whole number of days, 6,940. Using these whole numbers facilitates the construction of a lunisolar calendar.

Year Orbital period of the Earth around the Sun

A year is the orbital period of a planetary body, for example, the Earth, moving in its orbit around the Sun. Due to the Earth's axial tilt, the course of a year sees the passing of the seasons, marked by change in weather, the hours of daylight, and, consequently, vegetation and soil fertility. In temperate and subpolar regions around the planet, four seasons are generally recognized: spring, summer, autumn and winter. In tropical and subtropical regions, several geographical sectors do not present defined seasons; but in the seasonal tropics, the annual wet and dry seasons are recognized and tracked.

Sideband

In radio communications, a sideband is a band of frequencies higher than or lower than the carrier frequency, that are the result of the modulation process. The sidebands carry the information transmitted by the radio signal. The sidebands comprise all the spectral components of the modulated signal except the carrier. The signal components above the carrier frequency constitute the upper sideband (USB), and those below the carrier frequency constitute the lower sideband (LSB). All forms of modulation produce sidebands.

Sidereal time Timekeeping system

Sidereal time is a timekeeping system that astronomers use to locate celestial objects. Using sidereal time, it is possible to easily point a telescope to the proper coordinates in the night sky. In short, sidereal time is a "time scale that is based on Earth's rate of rotation measured relative to the fixed stars".

A sidereal year is the time taken by the Earth to orbit the Sun once with respect to the fixed stars. Hence, it is also the time taken for the Sun to return to the same position with respect to the fixed stars after apparently travelling once around the ecliptic. It equals 365.256 363 004 Ephemeris days for the J2000.0 epoch.

Pulse-width modulation

Pulse-width modulation (PWM), or pulse-duration modulation (PDM), is a method of reducing the average power delivered by an electrical signal, by effectively chopping it up into discrete parts. The average value of voltage fed to the load is controlled by turning the switch between supply and load on and off at a fast rate. The longer the switch is on compared to the off periods, the higher the total power supplied to the load. Along with maximum power point tracking (MPPT), it is one of the primary methods of reducing the output of solar panels to that which can be utilized by a battery. PWM is particularly suited for running inertial loads such as motors, which are not as easily affected by this discrete switching, because their inertia causes them to react slowly. The PWM switching frequency has to be high enough not to affect the load, which is to say that the resultant waveform perceived by the load must be as smooth as possible.

A solar calendar is a calendar whose dates indicate the season or almost equivalently the apparent position of the Sun relative to the stars. The Gregorian calendar, widely accepted as a standard in the world, is an example of a solar calendar. The main other type of calendar is a lunar calendar, whose months correspond to cycles of Moon phases. The months of the Gregorian calendar do not correspond to cycles of the Moon phase.

Solar cycle

The solar cycle or solar magnetic activity cycle is a nearly periodic 11-year change in the Sun's activity measured in terms of variations in the number of observed sunspots on the solar surface. Sunspots have been observed since the early 17th century and the sunspot time series is the longest continuously observed (recorded) time series of any natural phenomena.

This is an index of articles relating to electronics and electricity or natural electricity and things that run on electricity and things that use or conduct electricity.

Calendar reform or calendrical reform is any significant revision of a calendar system. The term sometimes is used instead for a proposal to switch to a different calendar design.

The Buddhist calendar is a set of lunisolar calendars primarily used in mainland Southeast Asian countries of Cambodia, Laos, Myanmar and Thailand as well as in Sri Lanka and Chinese populations of Malaysia and Singapore for religious or official occasions. While the calendars share a common lineage, they also have minor but important variations such as intercalation schedules, month names and numbering, use of cycles, etc. In Thailand, the name Buddhist Era is a year numbering system shared by the traditional Thai lunisolar calendar and by the Thai solar calendar.

A radio transmitter or just transmitter is an electronic device which produces radio waves with an antenna. Radio waves are electromagnetic waves with frequencies between about 30 Hz and 300 GHz. The transmitter itself generates a radio frequency alternating current, which is applied to the antenna. When excited by this alternating current, the antenna radiates radio waves. Transmitters are necessary parts of all systems that use radio: radio and television broadcasting, cell phones, wireless networks, radar, two way radios like walkie talkies, radio navigation systems like GPS, remote entry systems, among numerous other uses.

Cosmic infrared background Infrared radiation caused by stellar dust

Cosmic infrared background is infrared radiation caused by stellar dust.

A neutron monitor is a ground-based detector designed to measure the number of high-energy charged particles striking the Earth's atmosphere from outer space. For historical reasons the incoming particles are called "cosmic rays", but in fact they are particles, predominantly protons and Helium nuclei. Most of the time, a neutron monitor records galactic cosmic rays and their variation with the 11-year sunspot cycle and 22-year magnetic cycle. Occasionally the Sun emits cosmic rays of sufficient energy and intensity to raise radiation levels on Earth's surface to the degree that they are readily detected by neutron monitors. They are termed "ground level enhancements" (GLE).

A tropical year is the time that the Sun takes to return to the same position in the cycle of seasons, as seen from Earth; for example, the time from vernal equinox to vernal equinox, or from summer solstice to summer solstice. This differs from the time it takes Earth to complete one full orbit around the Sun as measured with respect to the fixed stars by about 20 minutes because of the precession of the equinoxes.

Scott Forbush American astronomer, physicist and geophysicist

Scott Ellsworth Forbush was an American astronomer, physicist and geophysicist who is recognized as having laid the observational foundations for many of the central features of solar-interplanetary-terrestrial physics, which at the time was an underdeveloped field of study. In 1937 Forbush discovered the Forbush Effect: an occasional decrease in the intensity of cosmic rays as observed on Earth that is caused by the solar wind and its interaction with the magnetosphere. Scott conducted most of his research during his career at the Department of Terrestrial Magnetism (DTM) of the Carnegie Institution of Washington where he was appointed chairman of a section on theoretical geophysics in 1957. Forbush used statistical methods in analyses of magnetic storms, solar activity, rotation of the Earth, and the rotation of the sun, and the correlation of this geophysical and solar phenomena with temporal variations of cosmic-ray intensity.

The Solar Hijri calendar, also called the Iranian Hijri calendar or Shamsi Hijri calendar, and abbreviated as SH and, sometimes, HS, is the official calendar of Iran and Afghanistan. It begins on the March equinox (Nowruz) as determined by astronomical calculation for the Iran Standard Time meridian and has years of 365 or 366 days.

Lunar month Time between successive new moons

In lunar calendars, a lunar month is the time between two successive syzygies of the same type: new moons or full moons. The precise definition varies, especially for the beginning of the month.

Erich Otto Ernst Rieger is a German astrophysicist who spent his research career at the Max Planck Institute for Extraterrestrial Physics (MPE) near Munich. He is notable for his 1984 discovery of the period of ~154 days in solar flares. Since the discovery, the period has been confirmed in most heliophysics data in our solar system, including the interplanetary magnetic field, and has become known as the Rieger period (PR).

References

  1. B. E. Kolterman, "A harmonic analysis of the large scale cosmic ray anisotropy", 30th International Cosmic Ray Conference (2007).
  2. Farley, F J M (1954). "The Sidereal Correlation of Extensive Air Showers". Proceedings of the Physical Society, Section A. 67 (11): 996–1004. Bibcode:1954PPSA...67..996F. doi:10.1088/0370-1298/67/11/306.
  3. K. Munakata et al, "Solar modulation of galactic cosmic-ray anisotropy", Proceedings of ICRC 2001
  4. K. Munakata et al, "Galactic anisotropy of ~10TeV cosmic-ray intensity observed by the Tibet air shower array", 28th International Cosmic Ray Conference (2003).