Antibiotic properties of nanoparticles

Last updated

Nanoparticles have been studied extensively for their antimicrobial properties in order to fight super bug bacteria. Several characteristics in particular make nanoparticles strong candidates as a traditional antibiotic drug alternative. Firstly, they have a high surface area to volume ratio, which increases contact area with target organisms. [1] [2] Secondly, they may be synthesized from polymers, lipids, and metals. [1] Thirdly, a multitude of chemical structures, such as fullerenes and metal oxides, allow for a diverse set of chemical functionalities.

Contents

The key to nanoparticle efficacy against antibiotic resistant strains of bacteria lies in their small size. On the nano scale, particles can behave as molecules when interacting with a cell which allows them to easily penetrate the cell membrane and interfere in vital molecular pathways if the chemistry is possible. [3]

Metal Nanoparticles

A strong research focus has been placed on triggering production of excessive reactive oxygen species (ROS) using nanoparticles injected into bacterial cells. The presence of excessive ROS can stress the cell structure leading to damaged DNA/RNA, decreased membrane activity, disrupted metabolic activity, and harmful side reactions generating chemicals such as peroxides. [4] [5] ROS production has been induced generally through the introduction of both metal oxide and positively charged metal nanoparticles in the cell, such as iron oxides and silver. The positive charge of the metal is attracted to the negative charge of the cell membrane which it then easily penetrates. Redox reactions take place in the cell between the metals and oxygen containing species in the cell to produce ROS. [6] Other novel techniques include utilizing quantum dots such as cadmium telluride, under a bright light source to excite and release electrons; this process initializes ROS production similar to the metal nanoparticles. [4]

Carbon Structures

Carbon nanostructures such as graphene oxide (GO) sheets, nano tubes, and fullerenes have proven antimicrobial properties when used synergistically with other methods. UV radiation directed at GO sheets, for example, disrupts bacterial cell activity and colony growth via ROS production. Doping nano tubes or fullerenes with silver or copper nanoparticles may also harm the cells ability to grow and replicate DNA. [7] Nano tubes and fullerenes in particular are being studied as aqueous dispersions rather than polymers, metals or other traditional dry solid particulates. The exact mechanism which promotes this synergy is not clearly understood but it is believed to be linked to the unique surface chemistry of carbon nanostructures (i.e. the large aspect ratio of carbon nanotubes, high surface energy in GO sheets). Human applications of carbon nano materials have not been tested due to the unknown potential hazards. Current research on the carcinogenic effects, if any, of carbon nanostructures is still in its infancy and there is therefore no clear consensus on the topic. [8]

Drug Synergies

Nanoparticles can enhance the effects of traditional antibiotics which a bacterium may have become resistant to, and decrease the overall minimum inhibitory concentration (MIC) required for a drug. Silver nanoparticles improve the activity of amoxicillin, penicillin, and gentamicin in bacteria by altering membrane permeability and improving drug delivery. [9] [10] nanoparticles themselves may have antimicrobial properties enhanced or induced with the addition of organic drugs. Gold particles, while not inherently antimicrobial, were discovered to express antimicrobial properties when functionalized with ampicillin. [11] In addition to this, gold nanoparticles demonstrated improved membrane permeability with the addition of 4,6-diamino-2-pyrimidenthiol (DAPT) and non-antibiotic amines (NAA) to their surfaces. [12]

Related Research Articles

<span class="mw-page-title-main">Penicillin</span> Group of antibiotics derived from Penicillium fungi

Penicillins are a group of β-lactam antibiotics originally obtained from Penicillium moulds, principally P. chrysogenum and P. rubens. Most penicillins in clinical use are synthesised by P. chrysogenum using deep tank fermentation and then purified. A number of natural penicillins have been discovered, but only two purified compounds are in clinical use: penicillin G and penicillin V. Penicillins were among the first medications to be effective against many bacterial infections caused by staphylococci and streptococci. They are still widely used today for different bacterial infections, though many types of bacteria have developed resistance following extensive use.

<span class="mw-page-title-main">Nanomaterials</span> Materials whose granular size lies between 1 and 100 nm

Nanomaterials describe, in principle, materials of which a single unit is sized between 1 and 100 nm.

An antimicrobial is an agent that kills microorganisms (microbicide) or stops their growth. Antimicrobial medicines can be grouped according to the microorganisms they act primarily against. For example, antibiotics are used against bacteria, and antifungals are used against fungi. They can also be classified according to their function. The use of antimicrobial medicines to treat infection is known as antimicrobial chemotherapy, while the use of antimicrobial medicines to prevent infection is known as antimicrobial prophylaxis.

<span class="mw-page-title-main">Nanoparticle</span> Particle with size less than 100 nm

A nanoparticle or ultrafine particle is a particle of matter 1 to 100 nanometres (nm) in diameter. The term is sometimes used for larger particles, up to 500 nm, or fibers and tubes that are less than 100 nm in only two directions. At the lowest range, metal particles smaller than 1 nm are usually called atom clusters instead.

<span class="mw-page-title-main">Nanochemistry</span> Combination of chemistry and nanoscience

Nanochemistry is an emerging sub-discipline of the chemical and material sciences that deals with the development of new methods for creating nanoscale materials. The term "nanochemistry" was first used by Ozin in 1992 as 'the uses of chemical synthesis to reproducibly afford nanomaterials from the atom "up", contrary to the nanoengineering and nanophysics approach that operates from the bulk "down"'. Nanochemistry focuses on solid-state chemistry that emphasizes synthesis of building blocks that are dependent on size, surface, shape, and defect properties, rather than the actual production of matter. Atomic and molecular properties mainly deal with the degrees of freedom of atoms in the periodic table. However, nanochemistry introduced other degrees of freedom that controls material's behaviors by transformation into solutions. Nanoscale objects exhibit novel material properties, largely as a consequence of their finite small size. Several chemical modifications on nanometer-scaled structures approve size dependent effects.

<span class="mw-page-title-main">Platensimycin</span> Chemical compound

Platensimycin, a metabolite of Streptomyces platensis, is an antibiotic, which act by blocking enzymes.

<span class="mw-page-title-main">Efflux pump</span> Protein complexes that move compounds, generally toxic, out of bacterial cells

An efflux pump is an active transporter in cells that moves out unwanted material. Efflux pumps are an important component in bacteria in their ability to remove antibiotics. The efflux could also be the movement of heavy metals, organic pollutants, plant-produced compounds, quorum sensing signals, bacterial metabolites and neurotransmitters. All microorganisms, with a few exceptions, have highly conserved DNA sequences in their genome that encode efflux pumps. Efflux pumps actively move substances out of a microorganism, in a process known as active efflux, which is a vital part of xenobiotic metabolism. This active efflux mechanism is responsible for various types of resistance to bacterial pathogens within bacterial species - the most concerning being antibiotic resistance because microorganisms can have adapted efflux pumps to divert toxins out of the cytoplasm and into extracellular media.

<span class="mw-page-title-main">Nanocomposite</span> Solid material with nano-scale structure

Nanocomposite is a multiphase solid material where one of the phases has one, two or three dimensions of less than 100 nanometers (nm) or structures having nano-scale repeat distances between the different phases that make up the material.

Nanotoxicology is the study of the toxicity of nanomaterials. Because of quantum size effects and large surface area to volume ratio, nanomaterials have unique properties compared with their larger counterparts that affect their toxicity. Of the possible hazards, inhalation exposure appears to present the most concern, with animal studies showing pulmonary effects such as inflammation, fibrosis, and carcinogenicity for some nanomaterials. Skin contact and ingestion exposure are also a concern.

As the world's energy demand continues to grow, the development of more efficient and sustainable technologies for generating and storing energy is becoming increasingly important. According to Dr. Wade Adams from Rice University, energy will be the most pressing problem facing humanity in the next 50 years and nanotechnology has potential to solve this issue. Nanotechnology, a relatively new field of science and engineering, has shown promise to have a significant impact on the energy industry. Nanotechnology is defined as any technology that contains particles with one dimension under 100 nanometers in length. For scale, a single virus particle is about 100 nanometers wide.

Green nanotechnology refers to the use of nanotechnology to enhance the environmental sustainability of processes producing negative externalities. It also refers to the use of the products of nanotechnology to enhance sustainability. It includes making green nano-products and using nano-products in support of sustainability.

Magnetic nanoparticles (MNPs) are a class of nanoparticle that can be manipulated using magnetic fields. Such particles commonly consist of two components, a magnetic material, often iron, nickel and cobalt, and a chemical component that has functionality. While nanoparticles are smaller than 1 micrometer in diameter, the larger microbeads are 0.5–500 micrometer in diameter. Magnetic nanoparticle clusters that are composed of a number of individual magnetic nanoparticles are known as magnetic nanobeads with a diameter of 50–200 nanometers. Magnetic nanoparticle clusters are a basis for their further magnetic assembly into magnetic nanochains. The magnetic nanoparticles have been the focus of much research recently because they possess attractive properties which could see potential use in catalysis including nanomaterial-based catalysts, biomedicine and tissue specific targeting, magnetically tunable colloidal photonic crystals, microfluidics, magnetic resonance imaging, magnetic particle imaging, data storage, environmental remediation, nanofluids, optical filters, defect sensor, magnetic cooling and cation sensors.

<span class="mw-page-title-main">Platinum nanoparticle</span>

Platinum nanoparticles are usually in the form of a suspension or colloid of nanoparticles of platinum in a fluid, usually water. A colloid is technically defined as a stable dispersion of particles in a fluid medium.

<span class="mw-page-title-main">Silver nanoparticle</span> Ultrafine particles of silver between 1 nm and 100 nm in size

Silver nanoparticles are nanoparticles of silver of between 1 nm and 100 nm in size. While frequently described as being 'silver' some are composed of a large percentage of silver oxide due to their large ratio of surface to bulk silver atoms. Numerous shapes of nanoparticles can be constructed depending on the application at hand. Commonly used silver nanoparticles are spherical, but diamond, octagonal, and thin sheets are also common.

Polymers with the ability to kill or inhibit the growth of microorganisms such as bacteria, fungi, or viruses are classified as antimicrobial agents. This class of polymers consists of natural polymers with inherent antimicrobial activity and polymers modified to exhibit antimicrobial activity. Polymers are generally nonvolatile, chemically stable, and can be chemically and physically modified to display desired characteristics and antimicrobial activity. Antimicrobial polymers are a prime candidate for use in the food industry to prevent bacterial contamination and in water sanitation to inhibit the growth of microorganisms in drinking water.

An antimicrobial surface is coated by an antimicrobial agent that inhibits the ability of microorganisms to grow on the surface of a material. Such surfaces are becoming more widely investigated for possible use in various settings including clinics, industry, and even the home. The most common and most important use of antimicrobial coatings has been in the healthcare setting for sterilization of medical devices to prevent hospital associated infections, which have accounted for almost 100,000 deaths in the United States. In addition to medical devices, linens and clothing can provide a suitable environment for many bacteria, fungi, and viruses to grow when in contact with the human body which allows for the transmission of infectious disease.

Antibiotic synergy is one of three responses possible when two or more antibiotics are used simultaneously to treat an infection. In the synergistic response, the applied antibiotics work together to produce an effect more potent than if each antibiotic were applied singly. Compare to the additive effect, where the potency of an antibiotic combination is roughly equal to the combined potencies of each antibiotic singly, and antagonistic effect, where the potency of the combination is less than the combined potencies of each antibiotic.

<span class="mw-page-title-main">Copper nanoparticle</span>

A copper nanoparticle is a copper based particle 1 to 100 nm in size. Like many other forms of nanoparticles, a copper nanoparticle can be prepared by natural processes or through chemical synthesis. These nanoparticles are of particular interest due to their historical application as coloring agents and the biomedical as well as the antimicrobial ones.

Chelated platinum is an ionized form of platinum that forms two or more bonds with a counter ion. Some platinum chelates are claimed to have antimicrobial activity.

<span class="mw-page-title-main">Antimicrobial nanotechnology</span>

Antimicrobial nanotechnology is the study of using biofilms to disrupt a microbe's cell membrane, deliver an electric charge to the microbe, and cause immediate cellular death via a "mechanical kill" process, preventing the original microbe from mutating into a superbug.

References

  1. 1 2 Kandi, Venkataramana; Kandi, Sabitha (2015-04-17). "Antimicrobial properties of nanomolecules: potential candidates as antibiotics in the era of multi-drug resistance". Epidemiology and Health. 37: e2015020. doi:10.4178/epih/e2015020. ISSN   2092-7193. PMC   4459197 . PMID   25968114.
  2. Hajipour, Mohammad J.; Fromm, Katharina M.; Akbar Ashkarran, Ali; Jimenez de Aberasturi, Dorleta; Larramendi, Idoia Ruiz de; Rojo, Teofilo; Serpooshan, Vahid; Parak, Wolfgang J.; Mahmoudi, Morteza (2012-10-01). "Antibacterial properties of nanoparticles" (PDF). Trends in Biotechnology. 30 (10): 499–511. doi:10.1016/j.tibtech.2012.06.004. PMID   22884769. S2CID   32908643.
  3. Allahverdiyev, Adil M.; Kon, Kateryna Volodymyrivna; Abamor, Emrah Sefik; Bagirova, Malahat; Rafailovich, Miriam (2011-11-01). "Coping with antibiotic resistance: combining nanoparticles with antibiotics and other antimicrobial agents". Expert Review of Anti-Infective Therapy. 9 (11): 1035–1052. doi:10.1586/eri.11.121. PMID   22029522. S2CID   24287211.
  4. 1 2 Bennington-Castro, Joseph (2016-03-01). "Bio Focus: Light-activated quantum dots kill antibiotic-resistant superbugs". MRS Bulletin. 41 (3): 178–179. Bibcode:2016MRSBu..41..178B. doi: 10.1557/mrs.2016.35 . ISSN   0883-7694.
  5. Huh, Ae Jung; Kwon, Young Jik (2011-12-10). ""Nanoantibiotics": a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era". Journal of Controlled Release. 156 (2): 128–145. doi:10.1016/j.jconrel.2011.07.002. ISSN   1873-4995. PMID   21763369.
  6. Cheng, Guyue; Dai, Menghong; Ahmed, Saeed; Hao, Haihong; Wang, Xu; Yuan, Zonghui (2016-04-08). "Antimicrobial Drugs in Fighting against Antimicrobial Resistance". Frontiers in Microbiology. 7: 470. doi: 10.3389/fmicb.2016.00470 . PMC   4824775 . PMID   27092125.
  7. Tegou, Evangelia; Magana, Maria; Katsogridaki, Alexandra Eleni; Ioannidis, Anastasios; Raptis, Vasilios; Jordan, Sheldon; Chatzipanagiotou, Stylianos; Chatzandroulis, Stavros; Ornelas, Catia (2016-05-01). "Terms of endearment: Bacteria meet graphene nanosurfaces". Biomaterials. 89: 38–55. doi:10.1016/j.biomaterials.2016.02.030. PMID   26946404.
  8. Rittinghausen, Susanne; Hackbarth, Anja; Creutzenberg, Otto; Ernst, Heinrich; Heinrich, Uwe; Leonhardt, Albrecht; Schaudien, Dirk (2014-11-20). "The carcinogenic effect of various multi-walled carbon nanotubes (MWCNTs) after intraperitoneal injection in rats". Particle and Fibre Toxicology. 11: 59. doi: 10.1186/s12989-014-0059-z . PMC   4243371 . PMID   25410479.
  9. Flórez-Castillo, J.M., Ropero-Vega, J.L., Perullini, M., Jobbágy, M. Biopolymeric pellets of polyvinyl alcohol and alginate for the encapsulation of Ib-M6 peptide and its antimicrobial activity against E. coli (2019) Heliyon, 5 (6), art. no. e01872. DOI: 10.1016/j.heliyon.2019.e01872 "Welcome to the US Petabox". Archived from the original on 2013-07-11. Retrieved 2020-06-19.{{cite web}}: CS1 maint: bot: original URL status unknown (link)
  10. Smekalova, Monika; Aragon, Virginia; Panacek, Ales; Prucek, Robert; Zboril, Radek; Kvitek, Libor (2016-03-01). "Enhanced antibacterial effect of antibiotics in combination with silver nanoparticles against animal pathogens". Veterinary Journal. 209: 174–179. doi:10.1016/j.tvjl.2015.10.032. PMID   26832810.
  11. Brown, Ashley N.; Smith, Kathryn; Samuels, Tova A.; Lu, Jiangrui; Obare, Sherine O.; Scott, Maria E. (2012-04-15). "Nanoparticles Functionalized with Ampicillin Destroy Multiple-Antibiotic-Resistant Isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and Methicillin-Resistant Staphylococcus aureus". Applied and Environmental Microbiology. 78 (8): 2768–2774. Bibcode:2012ApEnM..78.2768B. doi:10.1128/AEM.06513-11. PMC   3318834 . PMID   22286985.
  12. Zhao, Yuyun; Chen, Zeliang; Chen, Yanfen; Xu, Jie; Li, Jinghong; Jiang, Xingyu (2013-09-04). "Synergy of Non-antibiotic Drugs and Pyrimidinethiol on Gold Nanoparticles against Superbugs". Journal of the American Chemical Society. 135 (35): 12940–12943. doi:10.1021/ja4058635. PMID   23957534.