Antimutagen

Last updated

Antimutagens are the agents that interfere with the mutagenicity of a substance. [1] The interference can be in the form of prevention of the transformation of a promutagenic compound into actual active mutagen, inactivation, or otherwise the prevention of Mutagen-DNA reaction. [2]

Contents

Antimutagens can be classified into: Desmutagens, that inactivate the chemical interactions before the mutagen attacks the genes and Bio-antimutagens, that stop the mutation process once after the genes are damaged by mutagens. [2] There are a number of naturally occurring anti-mutagens that show their efficient action. [3] [4] [5]

Examples of antimutagens

Micronutrients

Nutrients such as vitamins and minerals are examples of micronutrients that are necessary for the proper maintenance of metabolism homeostasis in humans and other species. Micronutrients are also pointed to perform a role in genome stability acting as potential antimutagenic agents [6] (see the examples below):

UV blockers

Sunscreens are products commonly known by their capacity of protecting skin against sunburns. The active components present in sunscreens can vary, thus affecting the mechanism of protection against UV light, which can be done through absorption or reflection of UV energy. [8] As UV light can cause mutations by DNA damaging, sunscreen is considered an antimutagenic compound as it blocks the action of the UV light to induce mutagenesis in cells, basically the sunscreen inhibit the penetration of the mutagen. [9]

Tumor suppressor genes

These genes have the function of protecting cells against tumor-like behaviour, such as higher proliferative rates and unlimited growth. It is common to find those genes down regulated or even inactivated in tumor cells. Thus, tumor suppressor genes can be recognized as antimutagenic agents. [10]

Related Research Articles

Mutagenesis is a process by which the genetic information of an organism is changed by the production of a mutation. It may occur spontaneously in nature, or as a result of exposure to mutagens. It can also be achieved experimentally using laboratory procedures. A mutagen is a mutation-causing agent, be it chemical or physical, which results in an increased rate of mutations in an organism's genetic code. In nature mutagenesis can lead to cancer and various heritable diseases, and it is also a driving force of evolution. Mutagenesis as a science was developed based on work done by Hermann Muller, Charlotte Auerbach and J. M. Robson in the first half of the 20th century.

<span class="mw-page-title-main">Mutagen</span> Physical or chemical agent that increases the rate of genetic mutation

In genetics, a mutagen is a physical or chemical agent that permanently changes genetic material, usually DNA, in an organism and thus increases the frequency of mutations above the natural background level. As many mutations can cause cancer in animals, such mutagens can therefore be carcinogens, although not all necessarily are. All mutagens have characteristic mutational signatures with some chemicals becoming mutagenic through cellular processes.

p53 Mammalian protein found in Homo sapiens

p53, also known as Tumor protein P53, cellular tumor antigen p53, or transformation-related protein 53 (TRP53) is a regulatory protein that is often mutated in human cancers. The p53 proteins are crucial in vertebrates, where they prevent cancer formation. As such, p53 has been described as "the guardian of the genome" because of its role in conserving stability by preventing genome mutation. Hence TP53 is classified as a tumor suppressor gene.

<span class="mw-page-title-main">DNA repair</span> Cellular mechanism

DNA repair is a collection of processes by which a cell identifies and corrects damage to the DNA molecules that encodes its genome. In human cells, both normal metabolic activities and environmental factors such as radiation can cause DNA damage, resulting in tens of thousands of individual molecular lesions per cell per day. Many of these lesions cause structural damage to the DNA molecule and can alter or eliminate the cell's ability to transcribe the gene that the affected DNA encodes. Other lesions induce potentially harmful mutations in the cell's genome, which affect the survival of its daughter cells after it undergoes mitosis. As a consequence, the DNA repair process is constantly active as it responds to damage in the DNA structure. When normal repair processes fail, and when cellular apoptosis does not occur, irreparable DNA damage may occur, including double-strand breaks and DNA crosslinkages. This can eventually lead to malignant tumors, or cancer as per the two hit hypothesis.

<span class="mw-page-title-main">Molecular lesion</span> Damage to the structure of a biological molecule

A molecular lesion or point lesion is damage to the structure of a biological molecule such as DNA, RNA, or protein. This damage may result in the reduction or absence of normal function, and in rare cases the gain of a new function. Lesions in DNA may consist of breaks or other changes in chemical structure of the helix, ultimately preventing transcription. Meanwhile, lesions in proteins consist of both broken bonds and improper folding of the amino acid chain. While many nucleic acid lesions are general across DNA and RNA, some are specific to one, such as thymine dimers being found exclusively in DNA. Several cellular repair mechanisms exist, ranging from global to specific, in order to prevent lasting damage resulting from lesions.

<span class="mw-page-title-main">Xeroderma pigmentosum</span> Medical condition

Xeroderma pigmentosum (XP) is a genetic disorder in which there is a decreased ability to repair DNA damage such as that caused by ultraviolet (UV) light. Symptoms may include a severe sunburn after only a few minutes in the sun, freckling in sun-exposed areas, dry skin and changes in skin pigmentation. Nervous system problems, such as hearing loss, poor coordination, loss of intellectual function and seizures, may also occur. Complications include a high risk of skin cancer, with about half having skin cancer by age 10 without preventative efforts, and cataracts. There may be a higher risk of other cancers such as brain cancers.

DNA glycosylases are a family of enzymes involved in base excision repair, classified under EC number EC 3.2.2. Base excision repair is the mechanism by which damaged bases in DNA are removed and replaced. DNA glycosylases catalyze the first step of this process. They remove the damaged nitrogenous base while leaving the sugar-phosphate backbone intact, creating an apurinic/apyrimidinic site, commonly referred to as an AP site. This is accomplished by flipping the damaged base out of the double helix followed by cleavage of the N-glycosidic bond.

Carcinogenesis, also called oncogenesis or tumorigenesis, is the formation of a cancer, whereby normal cells are transformed into cancer cells. The process is characterized by changes at the cellular, genetic, and epigenetic levels and abnormal cell division. Cell division is a physiological process that occurs in almost all tissues and under a variety of circumstances. Normally, the balance between proliferation and programmed cell death, in the form of apoptosis, is maintained to ensure the integrity of tissues and organs. According to the prevailing accepted theory of carcinogenesis, the somatic mutation theory, mutations in DNA and epimutations that lead to cancer disrupt these orderly processes by interfering with the programming regulating the processes, upsetting the normal balance between proliferation and cell death. This results in uncontrolled cell division and the evolution of those cells by natural selection in the body. Only certain mutations lead to cancer whereas the majority of mutations do not.

<span class="mw-page-title-main">Base excision repair</span> DNA repair process

Base excision repair (BER) is a cellular mechanism, studied in the fields of biochemistry and genetics, that repairs damaged DNA throughout the cell cycle. It is responsible primarily for removing small, non-helix-distorting base lesions from the genome. The related nucleotide excision repair pathway repairs bulky helix-distorting lesions. BER is important for removing damaged bases that could otherwise cause mutations by mispairing or lead to breaks in DNA during replication. BER is initiated by DNA glycosylases, which recognize and remove specific damaged or inappropriate bases, forming AP sites. These are then cleaved by an AP endonuclease. The resulting single-strand break can then be processed by either short-patch or long-patch BER.

<span class="mw-page-title-main">MUTYH</span> Protein-coding gene in the species Homo sapiens

MUTYH is a human gene that encodes a DNA glycosylase, MUTYH glycosylase. It is involved in oxidative DNA damage repair and is part of the base excision repair pathway. The enzyme excises adenine bases from the DNA backbone at sites where adenine is inappropriately paired with guanine, cytosine, or 8-oxo-7,8-dihydroguanine, a common form of oxidative DNA damage.

<span class="mw-page-title-main">Pyrimidine dimer</span> Type of damage to DNA

Pyrimidine dimers are molecular lesions formed from thymine or cytosine bases in DNA via photochemical reactions, commonly associated with direct DNA damage. Ultraviolet light induces the formation of covalent linkages between consecutive bases along the nucleotide chain in the vicinity of their carbon–carbon double bonds. The photo-coupled dimers are fluorescent. The dimerization reaction can also occur among pyrimidine bases in dsRNA —uracil or cytosine. Two common UV products are cyclobutane pyrimidine dimers (CPDs) and 6–4 photoproducts. These premutagenic lesions alter the structure of the DNA helix and cause non-canonical base pairing. Specifically, adjacent thymines or cytosines in DNA will form a cyclobutane ring when joined together and cause a distortion in the DNA. This distortion prevents replication or transcription machinery beyond the site of the dimerization. Up to 50–100 such reactions per second might occur in a skin cell during exposure to sunlight, but are usually corrected within seconds by photolyase reactivation or nucleotide excision repair. In humans, the most common form of DNA repair is nucleotide excision repair (NER). In contrast, organisms such as bacteria can counterintuitively harvest energy from the sun to fix DNA damage from pyrimidine dimers via photolyase activity. If these lesions are not fixed, polymerase machinery may misread or add in the incorrect nucleotide to the strand. If the damage to the DNA is overwhelming, mutations can arise within the genome of an organism and may lead to the production of cancer cells. Uncorrected lesions can inhibit polymerases, cause misreading during transcription or replication, or lead to arrest of replication. It causes sunburn and it triggers the production of melanin. Pyrimidine dimers are the primary cause of melanomas in humans.

<span class="mw-page-title-main">Oxoguanine glycosylase</span> DNA glycosylase enzyme

8-Oxoguanine glycosylase, also known as OGG1, is a DNA glycosylase enzyme that, in humans, is encoded by the OGG1 gene. It is involved in base excision repair. It is found in bacterial, archaeal and eukaryotic species.

Caretaker genes encode products that stabilize the genome. Fundamentally, mutations in caretaker genes lead to genomic instability. Tumor cells arise from two distinct classes of genomic instability: mutational instability arising from changes in the nucleotide sequence of DNA and chromosomal instability arising from improper rearrangement of chromosomes.

<span class="mw-page-title-main">ERCC1</span> Protein-coding gene in the species Homo sapiens

DNA excision repair protein ERCC-1 is a protein that in humans is encoded by the ERCC1 gene. Together with ERCC4, ERCC1 forms the ERCC1-XPF enzyme complex that participates in DNA repair and DNA recombination.

<span class="mw-page-title-main">O-6-methylguanine-DNA methyltransferase</span> Mammalian protein found in Homo sapiens

O6-alkylguanine DNA alkyltransferase (also known as AGT, MGMT or AGAT) is a protein that in humans is encoded by the O6-methylguanine DNA methyltransferase (MGMT) gene. O6-methylguanine DNA methyltransferase is crucial for genome stability. It repairs the naturally occurring mutagenic DNA lesion O6-methylguanine back to guanine and prevents mismatch and errors during DNA replication and transcription. Accordingly, loss of MGMT increases the carcinogenic risk in mice after exposure to alkylating agents. The two bacterial isozymes are Ada and Ogt.

<span class="mw-page-title-main">8-Oxoguanine</span> Chemical compound

8-Oxoguanine (8-hydroxyguanine, 8-oxo-Gua, or OH8Gua) is one of the most common DNA lesions resulting from reactive oxygen species modifying guanine, and can result in a mismatched pairing with adenine resulting in G to T and C to A substitutions in the genome. In humans, it is primarily repaired by DNA glycosylase OGG1. It can be caused by ionizing radiation, in connection with oxidative metabolism.

<span class="mw-page-title-main">8-Oxo-2'-deoxyguanosine</span> Chemical compound

8-Oxo-2'-deoxyguanosine (8-oxo-dG) is an oxidized derivative of deoxyguanosine. 8-Oxo-dG is one of the major products of DNA oxidation. Concentrations of 8-oxo-dG within a cell are a measurement of oxidative stress.

DNA damage is an alteration in the chemical structure of DNA, such as a break in a strand of DNA, a nucleobase missing from the backbone of DNA, or a chemically changed base such as 8-OHdG. DNA damage can occur naturally or via environmental factors, but is distinctly different from mutation, although both are types of error in DNA. DNA damage is an abnormal chemical structure in DNA, while a mutation is a change in the sequence of base pairs. DNA damages cause changes in the structure of the genetic material and prevents the replication mechanism from functioning and performing properly. The DNA damage response (DDR) is a complex signal transduction pathway which recognizes when DNA is damaged and initiates the cellular response to the damage.

<span class="mw-page-title-main">Hereditary cancer syndrome</span> Inherited genetic condition that predisposes a person to cancer

A hereditary cancer syndrome is a genetic disorder in which inherited genetic mutations in one or more genes predispose the affected individuals to the development of cancer and may also cause early onset of these cancers. Hereditary cancer syndromes often show not only a high lifetime risk of developing cancer, but also the development of multiple independent primary tumors.

Mutational signatures are characteristic combinations of mutation types arising from specific mutagenesis processes such as DNA replication infidelity, exogenous and endogenous genotoxin exposures, defective DNA repair pathways, and DNA enzymatic editing.

References

  1. "The database and ontology of Chemical Entities of Biological Interest". EMBL-EBI, European Molecular Biology Laboratory, Wellcome Trust Genome Campus.
  2. 1 2 Kada, Tsuneo; Inoue, Tadashi; Ohta, Toshihiro; Shirasu, Yasuhiko (1986). "Antimutagens and their Modes of Action". Antimutagenesis and Anticarcinogenesis Mechanisms. pp. 181–196. doi:10.1007/978-1-4684-5182-5_15. ISBN   978-1-4684-5184-9. PMID   3533041.{{cite book}}: |journal= ignored (help)
  3. Renner, H.W.; Münzner, R. (April 1991). "The possible role of probiotics as dietary antimutagens". Mutation Research Letters. 262 (4): 239–245. doi:10.1016/0165-7992(91)90090-q. PMID   1708108.
  4. Mitscher, Lester A.; Telikepalli, Hanumaiah; McGhee, Eva; Shankel, Delbert M. (1996-02-19). "Natural antimutagenic agents". Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 350 (1): 143–152. doi:10.1016/0027-5107(95)00099-2. PMID   8657175.
  5. E. Wall, Monroe (1992). "Antimutagenic Agents from Natural Products". Journal of Natural Products. 55 (11): 1561–1568. doi:10.1021/np50089a002. PMID   1479376.
  6. Arigony, AL; de Oliveira, IM; Machado, M; Bordin, DL; Bergter, L; Prá, D; Henriques, JA (2013). "The influence of micronutrients in cell culture: a reflection on viability and genomic stability". BioMed Research International. 2013: 597282. doi: 10.1155/2013/597282 . PMC   3678455 . PMID   23781504.
  7. Collins, AR; Azqueta, A; Langie, SA (April 2012). "Effects of micronutrients on DNA repair". European Journal of Nutrition. 51 (3): 261–79. doi:10.1007/s00394-012-0318-4. PMID   22362552. S2CID   23866597.
  8. Maslin, DL (November 2014). "Do suncreens protect us?". International Journal of Dermatology. 53 (11): 1319–23. doi: 10.1111/ijd.12606 . PMID   25208462.
  9. De Flora, S (18 June 1998). "Mechanisms of inhibitors of mutagenesis and carcinogenesis". Mutation Research. 402 (1–2): 151–8. doi:10.1016/s0027-5107(97)00292-3. PMID   9675264.
  10. Hausman, Geoffrey M. Cooper ; Robert E. (2003). The cell (3 ed.). Washington, DC: ASM Press [u.a.] ISBN   978-0878932146.{{cite book}}: CS1 maint: multiple names: authors list (link)
  11. Zurer, I; Hofseth, LJ; Cohen, Y; Xu-Welliver, M; Hussain, SP; Harris, CC; Rotter, V (January 2004). "The role of p53 in base excision repair following genotoxic stress". Carcinogenesis. 25 (1): 11–9. doi: 10.1093/carcin/bgg186 . PMID   14555612.
  12. Song, MS; Salmena, L; Pandolfi, PP (4 April 2012). "The functions and regulation of the PTEN tumour suppressor". Nature Reviews. Molecular Cell Biology. 13 (5): 283–96. doi:10.1038/nrm3330. PMID   22473468. S2CID   28514977.

Further reading