Anzhong Wang is a theoretical physicist who specializes in gravitation, cosmology and astroparticle physics. He is on the Physics faculty of Baylor University. [1]
This section of a biography of a living person does not include any references or sources .(October 2016) |
Wang has written over 100 research articles in scholarly journals on topics in gravitational theory, cosmology, string theory and high-energy astrophysics.
Some recent publications are
Wang received the Outstanding Researcher Award in May 2009 from Baylor University [2] and is a member of the editorial board of Universe. [3]
In general relativity, a naked singularity is a hypothetical gravitational singularity without an event horizon.
In physics, quintessence is a hypothetical form of dark energy, more precisely a scalar field, postulated as an explanation of the observation of an accelerating rate of expansion of the universe. The first example of this scenario was proposed by Ratra and Peebles (1988) and Wetterich (1988). The concept was expanded to more general types of time-varying dark energy, and the term "quintessence" was first introduced in a 1998 paper by Robert R. Caldwell, Rahul Dave and Paul Steinhardt. It has been proposed by some physicists to be a fifth fundamental force. Quintessence differs from the cosmological constant explanation of dark energy in that it is dynamic; that is, it changes over time, unlike the cosmological constant which, by definition, does not change. Quintessence can be either attractive or repulsive depending on the ratio of its kinetic and potential energy. Those working with this postulate believe that quintessence became repulsive about ten billion years ago, about 3.5 billion years after the Big Bang.
A gravastar is an object hypothesized in astrophysics by Pawel O. Mazur and Emil Mottola as an alternative to the black hole theory. It has usual black hole metric outside of the horizon, but de Sitter metric inside. On the horizon there is a thin shell of matter. The term "gravastar" is a portmanteau of the words "gravitational vacuum star". Further theoretical considerations of gravastars include the notion of a nestar.
An acceleron is a hypothetical subatomic particle postulated to relate the mass of the neutrino to the dark energy conjectured to be responsible for the accelerating expansion of the universe. The acceleron was postulated by researchers at the University of Washington in 2004.
Warm dark matter (WDM) is a hypothesized form of dark matter that has properties intermediate between those of hot dark matter and cold dark matter, causing structure formation to occur bottom-up from above their free-streaming scale, and top-down below their free streaming scale. The most common WDM candidates are sterile neutrinos and gravitinos. The WIMPs, when produced non-thermally, could be candidates for warm dark matter. In general, however, the thermally produced WIMPs are cold dark matter candidates.
In cosmology, primordial black holes (PBHs) are hypothetical black holes that formed soon after the Big Bang. In the inflationary era and early radiation-dominated universe, extremely dense pockets of subatomic matter may have been tightly packed to the point of gravitational collapse, creating primordial black holes without the supernova compression typically needed to make black holes today. Because the creation of primordial black holes would pre-date the first stars, they are not limited to the narrow mass range of stellar black holes.
Hořava–Lifshitz gravity is a theory of quantum gravity proposed by Petr Hořava in 2009. It solves the problem of different concepts of time in quantum field theory and general relativity by treating the quantum concept as the more fundamental so that space and time are not equivalent (anisotropic) at high energy level. The relativistic concept of time with its Lorentz invariance emerges at large distances. The theory relies on the theory of foliations to produce its causal structure. It is related to topologically massive gravity and the Cotton tensor. It is a possible UV completion of general relativity. Also, the speed of light goes to infinity at high energies. The novelty of this approach, compared to previous approaches to quantum gravity such as loop quantum gravity, is that it uses concepts from condensed matter physics such as quantum critical phenomena. Hořava's initial formulation was found to have side-effects such as predicting very different results for a spherical Sun compared to a slightly non-spherical Sun, so others have modified the theory. Inconsistencies remain, though progress was made on the theory. Nevertheless, observations of gravitational waves emitted by the neutron-star merger GW170817 contravene predictions made by this model of gravity. Some have revised the theory to account for this.
The minisuperspace in physics, especially in theories of quantum gravity, is an approximation of the otherwise infinite-dimensional phase space of a field theory. The phase space is reduced by considering the largest wavelength modes to be of the order of the size of the universe when studying cosmological models and removing all larger modes. The validity of this approximation holds as long as the adiabatic approximation holds.
Relativistic images are images of gravitational lensing which result due to light deflections by angles .
Minicharged particles are a proposed type of subatomic particle. They are charged, but with a tiny fraction of the charge of the electron. They weakly interact with matter. Minicharged particles are not part of the Standard Model. One proposal to detect them involved photons tunneling through an opaque barrier in the presence of a perpendicular magnetic field, the rationale being that a pair of oppositely charged minicharged particles are produced that curve in opposite directions, and recombine on the other side of the barrier reproducing the photon again.
Searches for Lorentz violation involving photons provide one possible test of relativity. Examples range from modern versions of the classic Michelson–Morley experiment that utilize highly stable electromagnetic resonant cavities to searches for tiny deviations from c in the speed of light emitted by distant astrophysical sources. Due to the extreme distances involved, astrophysical studies have achieved sensitivities on the order of parts in 1038.
The Cosmology Large Angular Scale Surveyor (CLASS) is an array of microwave telescopes at a high-altitude site in the Atacama Desert of Chile as part of the Parque Astronómico de Atacama. The CLASS experiment aims to improve our understanding of cosmic dawn when the first stars turned on, test the theory of cosmic inflation, and distinguish between inflationary models of the very early universe by making precise measurements of the polarization of the Cosmic Microwave Background (CMB) over 65% of the sky at multiple frequencies in the microwave region of the electromagnetic spectrum.
The "axis of evil" is a name given to the apparent correlation between the plane of the Solar System and aspects of the cosmic microwave background (CMB). It gives the plane of the Solar System and hence the location of Earth a greater significance than might be expected by chance – a result which has been claimed to be evidence of a departure from the Copernican principle as assumed in the concordance model.
Kathryn M. Zurek is an American physicist and professor of theoretical physics at the California Institute of Technology. Her research interests primarily lie at the intersection of particle physics with cosmology and particle astrophysics. She is known for her theories on dark matter's "hidden valleys", also known as hidden sectors.
Dynamical dimensional reduction or spontaneous dimensional reduction is the apparent reduction in the number of spacetime dimensions as a function of the distance scale, or conversely the energy scale, with which spacetime is probed. At least within the current level of experimental precision, our universe has three dimensions of space and one of time. However, the idea that the number of dimensions may increase at extremely small length scales was first proposed more than a century ago, and is now fairly commonplace in theoretical physics. Contrary to this, a number of recent results in quantum gravity suggest the opposite behavior, a dynamical reduction of the number of spacetime dimensions at small length scales.
Horndeski's theory is the most general theory of gravity in four dimensions whose Lagrangian is constructed out of the metric tensor and a scalar field and leads to second order equations of motion. The theory was first proposed by Gregory Horndeski in 1974 and has found numerous applications, particularly in the construction of cosmological models of Inflation and dark energy. Horndeski's theory contains many theories of gravity, including General relativity, Brans-Dicke theory, Quintessence, Dilaton, Chameleon and covariant Galileon as special cases.
A. W. Peet is a professor of physics at the University of Toronto. Peet's research interests include string theory as a quantum theory of gravity, quantum field theory and applications of string theory to black holes, gauge theories, cosmology, and the correspondence between anti-de Sitter space and conformal field theories.
Céline Bœhm is a professor of Particle Physics at the University of Sydney. She works on astroparticle physics and dark matter.
In cosmological inflation, within the slow-roll paradigm, the Lyth argument places a theoretical upper bound on the amount of gravitational waves produced during inflation, given the amount of departure from the homogeneity of the cosmic microwave background (CMB).
Jean-Philippe Uzan is a French cosmologist and directeur de recherche employed by the Centre national de la recherche scientifique (CNRS).