Aquaver

Last updated
Aquaver
Company type Private
IndustryRenewables & Environment
Founded2011
Headquarters,
ProductsWater Treatment Systems
Website aquaver.com

Aquaver is a cleantech company headquartered in Voorburg, Netherlands, with offices at the High Tech Campus Eindhoven. Aquaver is acknowledged to be the first company worldwide to develop commercial systems based on membrane distillation, a novel technology for water treatment.

Contents

Technology

The technology of the Aquaver systems is based on membrane distillation. Membrane distillation combines membrane separation and distillation, with hydrophobic membranes and differences in vapour pressure. The Vacuum Multi Effect Membrane Distillation (VMEMD) configuration used in Aquaver systems adds the advantages of low-temperature operation and multi-effects to the membrane distillation characteristics. Aquaver has collaborated with memsys and Philips to develop its water treatment systems. [1]

Applications

Aquaver membrane distillation units are focused at desalination, [2] industrial water treatment, [3] and 'difficult-to-treat' waters. In February 2014 Aquaver commissioned in Gulhi, Maldives, the world's first desalination plant based on membrane distillation. [4] [5] The desalination plant makes use of the waste-heat produced by the existing diesel generators, which provide electricity to the island, to power the water purification process.

Aquaver is also participating with Abengoa and Masdar in a 7.9 million dollar project to develop an innovative desalination pilot plant in Ghantoot city, in Abu Dhabi’s border with Dubai. [6] The desalination plant will have a capacity of producing 1,000 m3/d of desalted water using a hybrid system consisting in reverse osmosis in combination with an innovative membrane distillation system, provided by Aquaver, to optimize the traditional reverse osmosis process.

Awards

Aquaver has received the Water Innovator of the Year 2013 [7] and the Frost & Sullivan 2014 European New Product Innovation Leadership Award [8] for the development of its membrane distillation water treatment systems.

Merge

In 2015 Aquaver merged with memsys, which provides the membrane distillation modules used in Aquaver systems. The Aquaver management team, who started the company and brought membrane distillation to the market, has left to start other new ventures.

See also

Related Research Articles

<span class="mw-page-title-main">Desalination</span> Removal of salts from water

Desalination is a process that removes mineral components from saline water. More generally, desalination is the removal of salts and minerals from a substance. One example is soil desalination. This is important for agriculture. It is possible to desalinate saltwater, especially sea water, to produce water for human consumption or irrigation. The by-product of the desalination process is brine. Many seagoing ships and submarines use desalination. Modern interest in desalination mostly focuses on cost-effective provision of fresh water for human use. Along with recycled wastewater, it is one of the few water resources independent of rainfall.

<span class="mw-page-title-main">NEWater</span> Brand of reclaimed wastewater

NEWater is the brand name given to highly treated reclaimed wastewater produced by Singapore's Public Utilities Board. NEWater is produced by further purifying conventionally treated wastewater through microfiltration, reverse osmosis and ultraviolet irradiation. The water is potable quality and can be added to drinking water supply reservoirs where it is withdrawn and treated again in conventional water treatment plants before being distributed to consumers. However, most NEWater is currently used for non-drinking purposes, mostly by industries with production requirements for high purity water.

<span class="mw-page-title-main">Forward osmosis</span> Water purification process

Forward osmosis (FO) is an osmotic process that, like reverse osmosis (RO), uses a semi-permeable membrane to effect separation of water from dissolved solutes. The driving force for this separation is an osmotic pressure gradient, such that a "draw" solution of high concentration, is used to induce a net flow of water through the membrane into the draw solution, thus effectively separating the feed water from its solutes. In contrast, the reverse osmosis process uses hydraulic pressure as the driving force for separation, which serves to counteract the osmotic pressure gradient that would otherwise favor water flux from the permeate to the feed. Hence significantly more energy is required for reverse osmosis compared to forward osmosis.

Multi-stage flash distillation (MSF) is a water desalination process that distills sea water by flashing a portion of the water into steam in multiple stages of what are essentially countercurrent heat exchangers. Current MSF facilities may have as many as 30 stages.

A physical plant, mechanical plant or industrial plant refers to the necessary infrastructure used in operation and maintenance of a given facility. The operation of these facilities, or the department of an organization which does so, is called "plant operations" or facility management. Industrial plant should not be confused with "manufacturing plant" in the sense of "a factory". This is a holistic look at the architecture, design, equipment, and other peripheral systems linked with a plant required to operate or maintain it.

Solar desalination is a desalination technique powered by solar energy. The two common methods are direct (thermal) and indirect (photovoltaic).

<span class="mw-page-title-main">Electrodialysis</span> Applied electric potential transport of salt ions.

Electrodialysis (ED) is used to transport salt ions from one solution through ion-exchange membranes to another solution under the influence of an applied electric potential difference. This is done in a configuration called an electrodialysis cell. The cell consists of a feed (dilute) compartment and a concentrate (brine) compartment formed by an anion exchange membrane and a cation exchange membrane placed between two electrodes. In almost all practical electrodialysis processes, multiple electrodialysis cells are arranged into a configuration called an electrodialysis stack, with alternating anion and cation-exchange membranes forming the multiple electrodialysis cells. Electrodialysis processes are different from distillation techniques and other membrane based processes in that dissolved species are moved away from the feed stream, whereas other processes move away the water from the remaining substances. Because the quantity of dissolved species in the feed stream is far less than that of the fluid, electrodialysis offers the practical advantage of much higher feed recovery in many applications.

<span class="mw-page-title-main">Reverse osmosis plant</span> Type of water purification plant

A reverse osmosis plant is a manufacturing plant where the process of reverse osmosis takes place. Reverse osmosis is a common process to purify or desalinate contaminated water by forcing water through a membrane. Water produced by reverse osmosis may be used for a variety of purposes, including desalination, wastewater treatment, concentration of contaminants, and the reclamation of dissolved minerals. An average modern reverse osmosis plant needs six kilowatt-hours of electricity to desalinate one cubic metre of water. The process also results in an amount of salty briny waste. The challenge for these plants is to find ways to reduce energy consumption, use sustainable energy sources, improve the process of desalination and to innovate in the area of waste management to deal with the waste. Self-contained water treatment plants using reverse osmosis, called reverse osmosis water purification units, are normally used in a military context.

<span class="mw-page-title-main">Thin-film composite membrane</span> Membrane used for water purification

Thin-film composite membranes are semipermeable membranes manufactured to provide selectivity with high permeability. Most TFC's are used in water purification or water desalination systems. They also have use in chemical applications such as gas separations, dehumidification, batteries and fuel cells. A TFC membrane can be considered a molecular sieve constructed in the form of a film from two or more layered materials. The additional layers provide structural strength and a low-defect surface to support a selective layer that is thin enough to be selective but not so thick that it causes low permeability.

A solar-powered desalination unit produces potable water from saline water through direct or indirect methods of desalination powered by sunlight. Solar energy is the most promising renewable energy source due to its ability to drive the more popular thermal desalination systems directly through solar collectors and to drive physical and chemical desalination systems indirectly through photovoltaic cells.

<span class="mw-page-title-main">Pressure exchanger</span> Device for exchanging pressure between two fluids

A pressure exchanger transfers pressure energy from a high pressure fluid stream to a low pressure fluid stream. Many industrial processes operate at elevated pressures and have high pressure waste streams. One way of providing a high pressure fluid to such a process is to transfer the waste pressure to a low pressure stream using a pressure exchanger.

<span class="mw-page-title-main">Membrane fouling</span>

Membrane fouling is a process whereby a solution or a particle is deposited on a membrane surface or in membrane pores in a processes such as in a membrane bioreactor, reverse osmosis, forward osmosis, membrane distillation, ultrafiltration, microfiltration, or nanofiltration so that the membrane's performance is degraded. It is a major obstacle to the widespread use of this technology. Membrane fouling can cause severe flux decline and affect the quality of the water produced. Severe fouling may require intense chemical cleaning or membrane replacement. This increases the operating costs of a treatment plant. There are various types of foulants: colloidal, biological, organic and scaling.

Richard Lindsay Stover, Ph.D., pioneered the development of the PX Pressure Exchanger energy recovery device Energy recovery that is currently in use in most seawater reverse osmosis desalination plants in existence today.

Reverse osmosis (RO) is a water purification process that uses a semi-permeable membrane to separate water molecules from other substances. RO applies pressure to overcome osmotic pressure that favors even distributions. RO can remove dissolved or suspended chemical species as well as biological substances, and is used in industrial processes and the production of potable water. RO retains the solute on the pressurized side of the membrane and the purified solvent passes to the other side. The relative sizes of the various molecules determines what passes through. "Selective" membranes reject large molecules, while accepting smaller molecules.

<span class="mw-page-title-main">Membrane</span> Thin, film-like structure separating two fluids, acting as a selective barrier

A membrane is a selective barrier; it allows some things to pass through but stops others. Such things may be molecules, ions, or other small particles. Membranes can be generally classified into synthetic membranes and biological membranes. Biological membranes include cell membranes ; nuclear membranes, which cover a cell nucleus; and tissue membranes, such as mucosae and serosae. Synthetic membranes are made by humans for use in laboratories and industry.

<span class="mw-page-title-main">Seawater desalination in Australia</span>

Australia is the driest habitable continent on Earth and its installed desalination capacity has been increasing. Until a few decades ago, Australia met its demands for water by drawing freshwater from dams and water catchments. As a result of the water supply crisis during the severe 1997–2009 drought, state governments began building desalination plants that purify seawater using reverse osmosis technology. Approximately one percent of the world's drinkable water originates from desalination plants.

The Minjur Desalination Plant is a reverse osmosis, water desalination plant at Kattupalli village, a northern suburb of Chennai, India, on the coast of the Bay of Bengal that supplies water to the city of Chennai. Built on a 60-acre site, it is the largest desalination plant in India. Construction works were carried out by the Indian company IVRCL and the Spanish company Abengoa, under the direction of the Project Manager Fernando Portillo Vallés and the Construction Manager Juan Ignacio Jiménez-Velasco, who returned to Europe after the inauguration of the plant to work on renewable energy projects. Originally scheduled to be operational by January 2009, the work on the plant was delayed due to Cyclone Nisha in October 2008, which damaged a portion of the completed marine works and destroyed the cofferdam meant for the installation of transition pipes. The trial runs were completed in June 2010 and the plant was opened in July 2010. Water from the plant will be utilised chiefly for industrial purposes such as the Ennore Port and North Chennai Thermal Power Station. However, during droughts, water from the plant will be supplied to the public, serving an estimated population of 1,000,000.

Membrane distillation (MD) is a thermally driven separation process in which separation is driven by phase change. A hydrophobic membrane presents a barrier for the liquid phase, allowing the vapour phase to pass through the membrane's pores. The driving force of the process is a partial vapour pressure difference commonly triggered by a temperature difference.

The low-temperature distillation (LTD) technology is the first implementation of the direct spray distillation (DSD) process. The first large-scale units are now in operation for desalination. The process was first developed by scientists at the University of Applied Sciences in Switzerland, focusing on low-temperature distillation in vacuum conditions, from 2000 to 2005.

References

  1. Archived 2015-03-19 at archive.today Philips news, December 2012. Retrieved on 2015-03-19
  2. " Sustainable desalination: Membrane distillation delivers greener clean water " Filtration and Separation, September–October 2012. Retrieved on 2014-03-28
  3. " Membrane distillation for water treatment " Speciality Chemicals Magazine, March 2014. Retrieved on 2014-03-28
  4. "Desalination plant powered by waste heat opens in Maldives" European Innovation Partnerships (EIP) news. Retrieved on 2014-03-18
  5. "Island finally gets its own water supply" Archived 2014-03-18 at the Wayback Machine , Global Water Intelligence, February 24, 2014. Retrieved on 2014-03-18
  6. Abengoa press release Retrieved on 2015-03-19
  7. "Water Innovator of the Year, by Watervisie Platform". Archived from the original on 2014-03-28. Retrieved 2014-03-28.
  8. Frost & Sullivan Best Practices Awards