Artronix

Last updated

Artronix Incorporated began in 1970 and has roots in a project in a computer science class at Washington University School of Medicine in St Louis. The class designed, built and tested a 12-bit minicomputer, which later evolved to become the PC12 minicomputer. The new company entered the bio-medical computing market with a set of peripherals and software for use in Radiation Treatment Planning (see full article and abstract) and ultrasound scanning. Software for the PC12 was written in assembly language and FORTRAN; later software was written in MUMPS. The company was located in two buildings in the Hanley Industrial Park off South Hanley Road in Maplewood, Missouri.

The company later developed another product line of brain-scanning or computed tomography equipment based on the Lockheed SUE 16-bit minicomputer (see also Pluribus); later designs included an optional vector processor using AMD Am2900 bipolar bit-slices to speed tomographic reconstruction calculations. In contrast to earlier designs, the Artronix scanner used a fan-shaped beam with 128 detectors on a rotating gantry. The system would take 540 degrees of data (1½ rotations) to average out noise in the samples. The beam allowed 3mm slices, but several slices would routinely be mathematically combined into one image for display purposes. The first generation of scanners was a head scanner while a later generation was a torso (whole-body) scanner. The CAT-3 (computerized axial tomography) system was a success at first, but the technology surrendered ground to PET (positron emission tomography) and MRI (magnetic resonance imaging) systems. Artronix closed its doors in 1978. A video of the Artronix torso scanner operating without a shroud is available on YouTube at Commissie NVvRadiologie with narration in Dutch.

Artronix was founded by Arne Roestel. Mr. Roestel went on to found Multidata Systems International. For his leadership of Artronix, Mr. Roestel was named as the Small Businessman of the Year for Missouri in 1976 by the Small Business Administration and was hosted at a luncheon by President Gerald Ford (source: Ford Library Museum).

Related Research Articles

<span class="mw-page-title-main">Positron emission tomography</span> Medical imaging technique

Positron emission tomography (PET) is a functional imaging technique that uses radioactive substances known as radiotracers to visualize and measure changes in metabolic processes, and in other physiological activities including blood flow, regional chemical composition, and absorption. Different tracers are used for various imaging purposes, depending on the target process within the body. For example, 18
F
-FDG
is commonly used to detect cancer, NaF18
F
is widely used for detecting bone formation, and oxygen-15 is sometimes used to measure blood flow.

<span class="mw-page-title-main">CT scan</span> Medical imaging procedure using X-rays to produce cross-sectional images

A computed tomography scan is a medical imaging technique used to obtain detailed internal images of the body. The personnel that perform CT scans are called radiographers or radiology technologists.

<span class="mw-page-title-main">Medical imaging</span> Technique and process of creating visual representations of the interior of a body

Medical imaging is the technique and process of imaging the interior of a body for clinical analysis and medical intervention, as well as visual representation of the function of some organs or tissues (physiology). Medical imaging seeks to reveal internal structures hidden by the skin and bones, as well as to diagnose and treat disease. Medical imaging also establishes a database of normal anatomy and physiology to make it possible to identify abnormalities. Although imaging of removed organs and tissues can be performed for medical reasons, such procedures are usually considered part of pathology instead of medical imaging.

<span class="mw-page-title-main">Single-photon emission computed tomography</span> Nuclear medicine tomographic imaging technique

Single-photon emission computed tomography is a nuclear medicine tomographic imaging technique using gamma rays. It is very similar to conventional nuclear medicine planar imaging using a gamma camera, but is able to provide true 3D information. This information is typically presented as cross-sectional slices through the patient, but can be freely reformatted or manipulated as required.

<span class="mw-page-title-main">Electron beam computed tomography</span> Medical diagnostic technology

Electron beam computed tomography (EBCT) is a specific form of computed tomography (CT) in which the X-ray tube is not mechanically spun in order to rotate the source of X-ray photons. This different design was explicitly developed to better image heart structures that never stop moving, performing a complete cycle of movement with each heartbeat.

Technicare, formerly known as Ohio Nuclear, made CT, DR and MRI scanners and other medical imaging equipment. Its headquarters was in Solon, Ohio. Originally an independent company which became publicly traded, it was later purchased by Johnson & Johnson. At the time, Invacare was also owned by Technicare. A Harvard Business Case was written about the challenges that precipitated the transition. The company did not do well under Johnson & Johnson and in 1986, under economic pressure following unrelated losses from two Tylenol product tampering cases, J&J folded the company, selling the intellectual property and profitable service business to General Electric, a competitor.

PC12 by Artronix was a minicomputer built with 7400-series TTL technology and ferrite core memory. Computers were manufactured at the Artronix facility in suburban St. Louis, Missouri.

<span class="mw-page-title-main">X-ray microtomography</span>

X-ray microtomography, like tomography and X-ray computed tomography, uses X-rays to create cross-sections of a physical object that can be used to recreate a virtual model without destroying the original object. The prefix micro- is used to indicate that the pixel sizes of the cross-sections are in the micrometre range. These pixel sizes have also resulted in the terms high-resolution X-ray tomography, micro-computed tomography, and similar terms. Sometimes the terms high-resolution CT (HRCT) and micro-CT are differentiated, but in other cases the term high-resolution micro-CT is used. Virtually all tomography today is computed tomography.

<span class="mw-page-title-main">Neuroimaging</span> Set of techniques to measure and visualize aspects of the nervous system

Neuroimaging is the use of quantitative (computational) techniques to study the structure and function of the central nervous system, developed as an objective way of scientifically studying the healthy human brain in a non-invasive manner. Increasingly it is also being used for quantitative studies of brain disease and psychiatric illness. Neuroimaging is a highly multidisciplinary research field and is not a medical specialty.

<span class="mw-page-title-main">Quantitative computed tomography</span>

Quantitative computed tomography (QCT) is a medical technique that measures bone mineral density (BMD) using a standard X-ray Computed Tomography (CT) scanner with a calibration standard to convert Hounsfield Units (HU) of the CT image to bone mineral density values. Quantitative CT scans are primarily used to evaluate bone mineral density at the lumbar spine and hip.

The CTX is an explosive detection device, a family of x-ray devices developed by InVision Technologies in 1990 that uses CAT scans and sophisticated image processing software to automatically screen checked baggage for explosives.

<span class="mw-page-title-main">PET-CT</span>

Positron emission tomography–computed tomography is a nuclear medicine technique which combines, in a single gantry, a positron emission tomography (PET) scanner and an x-ray computed tomography (CT) scanner, to acquire sequential images from both devices in the same session, which are combined into a single superposed (co-registered) image. Thus, functional imaging obtained by PET, which depicts the spatial distribution of metabolic or biochemical activity in the body can be more precisely aligned or correlated with anatomic imaging obtained by CT scanning. Two- and three-dimensional image reconstruction may be rendered as a function of a common software and control system.

Perfusion is the passage of fluid through the lymphatic system or blood vessels to an organ or a tissue. The practice of perfusion scanning is the process by which this perfusion can be observed, recorded and quantified. The term perfusion scanning encompasses a wide range of medical imaging modalities.

The computed tomography dose index (CTDI) is a commonly used radiation exposure index in X-ray computed tomography (CT), first defined in 1981. The unit of CTDI is the gray (Gy) and it can be used in conjunction with patient size to estimate the absorbed dose. The CTDI and absorbed dose may differ by more than a factor of two for small patients such as children.

<span class="mw-page-title-main">Industrial computed tomography</span> Computer-aided tomographic process

Industrial computed tomography (CT) scanning is any computer-aided tomographic process, usually X-ray computed tomography, that uses irradiation to produce three-dimensional internal and external representations of a scanned object. Industrial CT scanning has been used in many areas of industry for internal inspection of components. Some of the key uses for industrial CT scanning have been flaw detection, failure analysis, metrology, assembly analysis and reverse engineering applications. Just as in medical imaging, industrial imaging includes both nontomographic radiography and computed tomographic radiography.

<span class="mw-page-title-main">Cone beam computed tomography</span>

Cone beam computed tomography is a medical imaging technique consisting of X-ray computed tomography where the X-rays are divergent, forming a cone.

<span class="mw-page-title-main">Coronary CT angiography</span> Use of computed tomography angiography to assess the coronary arteries of the heart

Coronary CT angiography is the use of computed tomography (CT) angiography to assess the coronary arteries of the heart. The patient receives an intravenous injection of radiocontrast and then the heart is scanned using a high speed CT scanner, allowing physicians to assess the extent of occlusion in the coronary arteries, usually in order to diagnose coronary artery disease.

<span class="mw-page-title-main">Guido Benjamin Pardo-Roques</span>

Guido Pardo-Roques is an Israeli businessman. He is the president and CEO of Philips Israel and CEO of Philips Medical System Technologies which constitutes the Israel Commercial and Industrial branches of the multinational corporation Royal Philips Electronics.

<span class="mw-page-title-main">Operation of computed tomography</span>

X-ray computed tomography operates by using an X-ray generator that rotates around the object; X-ray detectors are positioned on the opposite side of the circle from the X-ray source.

<span class="mw-page-title-main">History of computed tomography</span> History of CT scanning technology

The history of X-ray computed tomography dates back to at least 1917 with the mathematical theory of the Radon transform In October 1963, William H. Oldendorf received a U.S. patent for a "radiant energy apparatus for investigating selected areas of interior objects obscured by dense material". The first clinical CT scan was performed in 1971 using a scanner invented by Sir Godfrey Hounsfield.

References

  1. Gulati, A.N.; Dooley Jr, JM; Young, S (December 1978). "Clinical usefulness of Artronix brain scanner multiplanar coronal and sagittal brain images". Neuroradiology . Springer Berlin/Heidelberg. 16: 568–9. doi:10.1007/BF00395363. PMID   745759. S2CID   9819765. Archived from the original on 2013-02-02.
  2. Grier, Scott (2006). "First Fast-Scan CAT Scanner". p. 1. Archived from the original on 2011-08-21. Retrieved 2012-04-01. Link broken when tested on 2017-07-13.