Asd RNA motif

Last updated
asd RNA motif
Asd-RNA.svg
Consensus secondary structure of asd RNAs. The stem marked "terminator" is predicted as a Rho-independent transcription terminator.
Identifiers
Symbolasd RNA
Rfam RF01732
Other data
RNA typesRNA
Domain(s) Streptococcaceae
SO 0000655
PDB structures PDBe

The asd RNA motif is a conserved RNA structure found in certain lactic acid bacteria. The asd motif was detected by bioinformatics [1] and an individual asd RNA in Streptococcus pyogenes was detected by microarray and northern hybridization experiments as a 170-nucleotide molecule called "SR914400". [2] The transcription start site determined for SR914400 corresponds to the 5′-end of the molecule shown in the consensus diagram.

Some asd RNA are associated with genes, such as asd, that are suggestive of a cis-regulatory function. [3] However, several lines of evidence suggest that this is not the biological role of asd RNAs. First, in some cases, the asd RNA is not in the 5' untranslated region of any annotated gene. Second, in Streptococcus mutans , there is a strong promoter [4] immediately downstream of the transcription terminator that follows the asd RNA, and this promoter precedes the downstream gene. This arrangement suggests that asd RNA transcription is terminated, and the gene is transcribed from the downstream promoter. Finally, although the asd gene encodes an enzyme, aspartate-semialdehyde dehydrogenase, that participates in the synthesis of methionine, lysine and threonine, transcription levels of the asd gene remain constant even when the concentrations of these amino acids are varied. [4]

The sRNA was shown to interact with the 5'UTR of the mga transcript (the multiple virulence gene regulator gene) and was renamed MarS for mag-activating regulatory sRNA. In MarS deletion strains expression of mga and several Mga-activated genes is reduced. This down-regulation of virulence factors leads to increased susceptibility of the deletion strain to phagocytosis, reduced adherence to human keratinocytes. However, the lack of MarS increased bacterial dissemination and tolerance towards oxidative stress. [5]

Related Research Articles

<i>Streptococcus</i> Genus of bacteria

Streptococcus is a genus of gram-positive coccus or spherical bacteria that belongs to the family Streptococcaceae, within the order Lactobacillales, in the phylum Bacillota. Cell division in streptococci occurs along a single axis, so as they grow, they tend to form pairs or chains that may appear bent or twisted. This differs from staphylococci, which divide along multiple axes, thereby generating irregular, grape-like clusters of cells. Most streptococci are oxidase-negative and catalase-negative, and many are facultative anaerobes.

<i>Streptococcus pyogenes</i> Species of bacterium

Streptococcus pyogenes is a species of Gram-positive, aerotolerant bacteria in the genus Streptococcus. These bacteria are extracellular, and made up of non-motile and non-sporing cocci that tend to link in chains. They are clinically important for humans, as they are an infrequent, but usually pathogenic, part of the skin microbiota that can cause Group A streptococcal infection. S. pyogenes is the predominant species harboring the Lancefield group A antigen, and is often called group A Streptococcus (GAS). However, both Streptococcus dysgalactiae and the Streptococcus anginosus group can possess group A antigen as well. Group A streptococci, when grown on blood agar, typically produce small (2–3 mm) zones of beta-hemolysis, a complete destruction of red blood cells. The name group A (beta-hemolytic) Streptococcus (GABHS) is thus also used.

Virulence factors are cellular structures, molecules and regulatory systems that enable microbial pathogens to achieve the following:

fis E. coli gene

fis is an E. coli gene encoding the Fis protein. The regulation of this gene is more complex than most other genes in the E. coli genome, as Fis is an important protein which regulates expression of other genes. It is supposed that fis is regulated by H-NS, IHF and CRP. It also regulates its own expression (autoregulation). Fis is one of the most abundant DNA binding proteins in Escherichia coli under nutrient-rich growth conditions.

In the field of molecular biology the 6S RNA is a non-coding RNA that was one of the first to be identified and sequenced. What it does in the bacterial cell was unknown until recently. In the early 2000s scientists found out the function of 6S RNA to be as a regulator of sigma 70-dependent gene transcription. All bacterial RNA polymerases have a subunit called a sigma factor. The sigma factors are important because they control how DNA promoter binding and RNA transcription start sites. Sigma 70 was the first one to be discovered in Escherichia coli.

<span class="mw-page-title-main">ArcZ RNA</span>

In molecular biology the ArcZ RNA is a small non-coding RNA (ncRNA). It is the functional product of a gene which is not translated into protein. ArcZ is an Hfq binding RNA that functions as an antisense regulator of a number of protein coding genes.

<span class="mw-page-title-main">Bacteroidales-1 RNA motif</span>

The Bacteroidales-1 RNA motif is a conserved RNA structure identified by bioinformatics. It has been identified only in bacteria within the order (biology) Bacteroidales. Its presumed length is marked by a promoter on one end that conforms to an alternate consensus sequence that is common in the phylum Bacteroidota, and its 3′ end is indicated by predicted transcription terminators. It is often located downstream of a gene that encodes the L20 ribosomal subunit, although it is unclear whether there is a functional reason underlying this apparent association.

c4 antisense RNA

The c4 antisense RNA is a non-coding RNA used by certain phages that infect bacteria. It was initially identified in the P1 and P7 phages of E. coli. The identification of c4 antisense RNAs solved the mystery of the mechanism for regulation of the ant gene, which is an anti-repressor.

<span class="mw-page-title-main">Fluoride riboswitch</span> Fluoride-binding RNA structure

The fluoride riboswitch is a conserved RNA structure identified by bioinformatics in a wide variety of bacteria and archaea. These RNAs were later shown to function as riboswitches that sense fluoride ions. These "fluoride riboswitches" increase expression of downstream genes when fluoride levels are elevated, and the genes are proposed to help mitigate the toxic effects of very high levels of fluoride.

<span class="mw-page-title-main">Downstream-peptide motif</span>

The Downstream-peptide motif refers to a conserved RNA structure identified by bioinformatics in the cyanobacterial genera Synechococcus and Prochlorococcus and one phage that infects such bacteria. It was also detected in marine samples of DNA from uncultivated bacteria, which are presumably other species of cyanobacteria.

<span class="mw-page-title-main">HopC RNA motif</span>

The hopC RNA motif is a predicted cis-regulatory element identified by a bioinformatic screen for conserved RNA secondary structures. hopC RNAs are exclusively found within bacteria classified within the genus Helicobacter, some of which are human pathogens that infect the stomach and can cause ulcers.

<span class="mw-page-title-main">JUMPstart RNA motif</span>

The JUMPstart RNA motif describes a conserved RNA-based secondary structure associated with JUMPstart elements. The 39-base-pair JUMPstart sequence describes a conserved element upstream of genes that participate in polysaccharide synthesis. The JUMPstart element has been shown to function as an RNA, and is present in the 5' untranslated regions of the genes it regulates.

<span class="mw-page-title-main">L17DE RNA motif</span>

The L17 downstream element RNA motif is a conserved RNA structure identified in bacteria by bioinformatics. All known L17 downstream elements were detected immediately downstream of genes encoding the L17 subunit of the ribosome, and therefore might be in the 3' untranslated regions of these genes. The element is found in a variety of lactic acid bacteria and in the genus Listeria.

<span class="mw-page-title-main">Pseudomon-1 RNA motif</span>

The Pseudomon-1 RNA motif is a conserved RNA identified by bioinformatics. It is used by most species whose genomes have been sequenced and that are classified within the genus Pseudomonas, and is also present in Azotobacter vinelandii, a closely related species. It is presumed to function as a non-coding RNA. Pseudomon-1 RNAs consistently have a downstream rho-independent transcription terminator.

Bacterial small RNAs (bsRNA) are small RNAs produced by bacteria; they are 50- to 500-nucleotide non-coding RNA molecules, highly structured and containing several stem-loops. Numerous sRNAs have been identified using both computational analysis and laboratory-based techniques such as Northern blotting, microarrays and RNA-Seq in a number of bacterial species including Escherichia coli, the model pathogen Salmonella, the nitrogen-fixing alphaproteobacterium Sinorhizobium meliloti, marine cyanobacteria, Francisella tularensis, Streptococcus pyogenes, the pathogen Staphylococcus aureus, and the plant pathogen Xanthomonas oryzae pathovar oryzae. Bacterial sRNAs affect how genes are expressed within bacterial cells via interaction with mRNA or protein, and thus can affect a variety of bacterial functions like metabolism, virulence, environmental stress response, and structure.

<span class="mw-page-title-main">RivX sRNA</span>

RivX sRNA is a non-coding RNA molecule involved in the interface between two key regulators of virulence in the human pathogen Streptococcus pyogenes : the CovR/S system and Mga regulator. This RNA, along with its downstream protein-coding gene RivR, are the first discovered links between these two important regulation networks. An extra protein linking the two pathways, TrxR, was described a year later. The adjoining of these two pathways could allow a consistently high virulence of S. pyogenes despite a variety of environmental conditions.

In molecular biology, Streptococcus sRNAs are small RNAs produced by species of Streptococcus bacteria. Several screens have identified numerous sRNAs in different species and strains of Streptococcus including S. pneumoniae, S. pyogenes, S. agalactiae and S.mutans. The function of most of these is currently unknown, however a few have been characterised including FasX small RNA. Many sRNAs have roles in pathogenesis.

<span class="mw-page-title-main">Cas9</span> Microbial protein found in Streptococcus pyogenes M1 GAS

Cas9 is a 160 kilodalton protein which plays a vital role in the immunological defense of certain bacteria against DNA viruses and plasmids, and is heavily utilized in genetic engineering applications. Its main function is to cut DNA and thereby alter a cell's genome. The CRISPR-Cas9 genome editing technique was a significant contributor to the Nobel Prize in Chemistry in 2020 being awarded to Emmanuelle Charpentier and Jennifer Doudna.

<i>uup</i> RNA motif

The uup RNA motif is a conserved RNA structure that was discovered by bioinformatics. uup motif RNAs are found in Bacillota and Gammaproteobacteria.

RopB transcriptional regulator, also known as RopB/Rgg transcriptional regulator is a transcriptional regulator protein that regulates expression of the extracellularly secreted cysteine protease streptococcal pyrogenic exotoxin B (speB) [See Also: erythrogenic toxins] which is an important virulence factor of Streptococcus pyogenes and is responsible for the dissemination of a host of infectious diseases including strep throat, impetigo, streptococcal toxic shock syndrome, necrotizing fasciitis, and scarlet fever. Functional studies suggest that the ropB multigene regulon is responsible for not only global regulation of virulence but also a wide range of functions from stress response, metabolic function, and two-component signaling. Structural studies implicate ropB's regulatory action being reliant on a complex interaction involving quorum sensing with the leaderless peptide signal speB-inducing peptide (SIP) acting in conjunction with a pH sensitive histidine switch.

References

  1. Weinberg Z, Wang JX, Bogue J, Yang J, Corbino K, Moy RH, Breaker RR (March 2010). "Comparative genomics reveals 104 candidate structured RNAs from bacteria, archaea, and their metagenomes". Genome Biology. 11 (3): R31. doi: 10.1186/gb-2010-11-3-r31 . PMC   2864571 . PMID   20230605.
  2. Perez N, Treviño J, Liu Z, Ho SC, Babitzke P, Sumby P (November 2009). "A genome-wide analysis of small regulatory RNAs in the human pathogen group A Streptococcus". PLOS ONE. 4 (11): e7668. Bibcode:2009PLoSO...4.7668P. doi: 10.1371/journal.pone.0007668 . PMC   2765633 . PMID   19888332.
  3. Rosinski-Chupin I, Sauvage E, Sismeiro O, Villain A, Da Cunha V, Caliot ME, Dillies MA, Trieu-Cuot P, Bouloc P, Lartigue MF, Glaser P (May 2015). "Single nucleotide resolution RNA-seq uncovers new regulatory mechanisms in the opportunistic pathogen Streptococcus agalactiae". BMC Genomics. 16 (1): 419. doi: 10.1186/s12864-015-1583-4 . PMC   4448216 . PMID   26024923.
  4. 1 2 Cardineau GA, Curtiss R (March 1987). "Nucleotide sequence of the asd gene of Streptococcus mutans. Identification of the promoter region and evidence for attenuator-like sequences preceding the structural gene". The Journal of Biological Chemistry. 262 (7): 3344–3353. doi: 10.1016/S0021-9258(18)61509-1 . PMID   2434499.
  5. Pappesch R, Warnke P, Mikkat S, Normann J, Wisniewska-Kucper A, Huschka F, Wittmann M, Khani A, Schwengers O, Oehmcke-Hecht S, Hain T, Kreikemeyer B, Patenge N (September 2017). "The Regulatory Small RNA MarS Supports Virulence of Streptococcus pyogenes". Scientific Reports. 7 (1): 12241. Bibcode:2017NatSR...712241P. doi:10.1038/s41598-017-12507-z. PMC   5613026 . PMID   28947755.