Associative sequence learning

Last updated

Associative sequence learning (ASL) is a neuroscientific theory that attempts to explain how mirror neurons are able to match observed and performed actions, and how individuals (adults, children, animals) are able to imitate body movements. The theory was proposed by Cecilia Heyes in 2000. [1] [2] (For reviews see [3] [4] [5] ). A conceptually similar model proposed by Christian Keysers and David Perrett, based on what we know about the neural properties of mirror neurons and spike-timing-dependent plasticity is the Hebbian learning account of mirror neurons. [6]

Contents

Its central principle is that associations between sensory and motor representations are acquired ontogenetically (i.e. acquired during development), as a result of correlated sensorimotor experience. Consider the example of an actor clenching their fist. In this situation the activation of the motor representation (the motor plan to clench fist) is often paired with the corresponding perceptual representation (the sight of a closed fist). Heyes proposes that, over time, a bidirectional associative link is formed such that activation of one representation excites the other. Put simply, as a consequence of paired 'doing' and 'seeing' links are established which allow action observation to prime action execution.

In the above example, correlated sensorimotor experience is provided by self-observation. However, this cannot explain the development of sensorimotor associations for so-called 'perceptually opaque' actions. These are actions which cannot be observed by the actor, and include facial expressions, and whole body actions (e.g. a tennis serve). Heyes proposes two other sources of sensorimotor experience to account for the emergence of associations for opaque actions; experience mediated by mirror reflections, and the experience of being imitated by others. When an actor smiles in the mirror, his reflection smiles back. Consequently, a motor representation ("smile") is paired with the corresponding sensory representation (the sight of a smiling face). Similarly, there is considerable evidence that parents imitate young infants. [7] Thus when an infant 'stumbles across' the motor plan to frown, this may be paired with the sight of a parent's frowning face.

Other sources of correlated sensorimotor experience may also include synchronous action (in dance and sports contexts where actors are executing and observing similar actions) and acquired equivalence experience (where an action excites a visual representation, via a shared auditory representation).

A further defining characteristic of the ASL model is its claim that the development of sensorimotor links is mediated by the same mechanisms of associative learning that produce Pavlovian conditioning. Crucially, Heyes therefore proposes that the development of sensorimotor associations is not only sensitive to temporal contiguity (the extent to which activation of sensory and motor representations are close together in time) but also to contingency (the extent to which activation of one representation is predictive of the other). This is a crucial feature of the ASL model as it explains why actors do not acquire spurious sensorimotor associations. Consider the example of two interactants, one of whom is scratching his ear when his colleague sneezes. Learning-based models which do not stipulate a sensitivity to contingency predict that the motor plan for ear-scratching ought to become associated with the visual representation of sneezing! However, ASL predicts that no association will develop because the act of ear-scratching is not predictive of the sight of sneezing – in other words there is no sensorimotor contingency. The Hebbian learning account of the emergence of mirror neurons [6] also emphasizes the importance of contingency, as it is known that the synaptic plasticity that underlies Hebbian learning is known to depend on contingency. [8]

Evidence

Neuroimaging studies suggest that the human mirror system is sensitive to sensorimotor experience. Specifically, it appears that mirror system activation is greater when an observer has related motor expertise. [9] [10] For example, a stronger fMRI response was observed in classic mirror areas (premotor, parietal and posterior superior temporal sulcus) when ballet experts observed ballet sequences, than when they viewed matched capoeira stimuli. The fact that mirror system activation is sensitive to sensorimotor expertise, provides a strong indication that the properties of mirror neurons are acquired through learning.

Heyes and colleagues have also shown that a number of imitative effects, thought to be mediated by the mirror system, may be reversed through periods of 'counter-mirror' sensorimotor training. For example, humans are typically quicker at making imitative responses relative to comparable non-imitative responses. This effect is widely believed to be a product of the human mirror system: Action observation is thought to excite a subset of the premotor neurons responsible for the execution of an action, thus priming execution of the matching response. However, following periods of training during which the execution of one action (e.g. hand open) is paired with the observation of another action (e.g. hand close) the reaction time advantage for imitative responses may be abolished. [11] Similar counter-mirror training has also been shown to reverse classic mirror system effects observed with transcranial magnetic stimulation (TMS) [12] and functional imaging [13] paradigms.

As predicted by associative learning theory, and therefore by the ASL model, this learning is sensitive to sensorimotor contingency (i.e. the degree to which excitation of one representation predicts the excitation of the other). When there is no contingency between sensory and motor representations; for example, when action execution is equally likely both in the presence and absence of the counter-mirror visual stimulus, little or no learning is observed. [14]

See also

Notes

  1. Heyes, C. M. & Ray, E. (2000) What is the significance of imitation in animals? Advances in the Study of Behavior, 29, 215–245
  2. Heyes, C. M. (2001) Causes and consequences of imitation. Trends in Cognitive Sciences, 5, 253–261
  3. Heyes, C. M. (2010) Where do mirror neurons come from? Neuroscience and Biobehavioural Reviews, 34, 575–583
  4. Heyes, C. M. (2010) Mesmerising mirror neurons. NeuroImage, 51, 789–791
  5. Catmur, C., Walsh & Heyes, C. M. (2009). The role of experience in the development of imitation and the mirror system. Philosophical Transactions of the Royal Society B, 364, 2369 – 2380
  6. 1 2 Keysers, C., & Perrett, D.I. (2004). Demystifying social cognition: a Hebbian perspective. Trends in Cognitive Sciences, 8, 501–507
  7. Malatesta, C. Z., & Haviland, J. M. (1982). Learning display rules: The socialization of emotion expression in infancy. Child Development, 53, 991–1003.
  8. Bauer, E. P., LeDoux, J. E., & Nader, K. (2001). Fear conditioning and LTP in the lateral amygdala are sensitive to the same stimulus contingencies. Nat Neurosci, 4(7), 687–688
  9. Calvo-Merino, B., Glaser, D. E., Grezes, J., Passingham, R. E., & Haggard, P. (2005). Action observation and acquired motor skills: an fMRI study with expert dancers. Cerebral Cortex, 15, 1243–1249.
  10. Calvo-Merino, B., Grezes, J., Glaser, D. E., Passingham, R. E., & Haggard, P. (2006). Seeing or doing? Influence of visual and motor familiarity in action observation. Current Biology, 16, 1905–1910.
  11. Heyes, C. M., Bird, G., Johnson, H. & Haggard, P. (2005) Experience modulates automatic imitation. Cognitive Brain Research, 22, 233–240.
  12. Catmur, C., Walsh, V. & Heyes, C. M. (2007) Sensorimotor learning configures the human mirror system. Current Biology, 17, 1527–1531
  13. Catmur, C., Gillmeister, H., Bird, G., Liepelt, R., Brass, M. & Heyes, C. (2008) Through the looking glass: counter-mirror activation following incompatible sensorimotor learning. European Journal of Neuroscience, 28(6), 1208–1215
  14. Cook, R., Press, C., Dickinson, A. & Heyes, C. M. (2010) Acquisition of automatic imitation is sensitive to sensorimotor contingency. Journal of Experimental Psychology: Human Perception and Performance, 36(4), 840–852.

Related Research Articles

Observational learning is learning that occurs through observing the behavior of others. It is a form of social learning which takes various forms, based on various processes. In humans, this form of learning seems to not need reinforcement to occur, but instead, requires a social model such as a parent, sibling, friend, or teacher with surroundings. Particularly in childhood, a model is someone of authority or higher status in an environment. In animals, observational learning is often based on classical conditioning, in which an instinctive behavior is elicited by observing the behavior of another, but other processes may be involved as well.

Hebbian theory is a neuroscientific theory claiming that an increase in synaptic efficacy arises from a presynaptic cell's repeated and persistent stimulation of a postsynaptic cell. It is an attempt to explain synaptic plasticity, the adaptation of brain neurons during the learning process. It was introduced by Donald Hebb in his 1949 book The Organization of Behavior. The theory is also called Hebb's rule, Hebb's postulate, and cell assembly theory. Hebb states it as follows:

Let us assume that the persistence or repetition of a reverberatory activity tends to induce lasting cellular changes that add to its stability. ... When an axon of cell A is near enough to excite a cell B and repeatedly or persistently takes part in firing it, some growth process or metabolic change takes place in one or both cells such that A’s efficiency, as one of the cells firing B, is increased.

Muscle spindle Innervated muscle structure involved in reflex actions and proprioception

Muscle spindles are stretch receptors within the body of a skeletal muscle that primarily detect changes in the length of the muscle. They convey length information to the central nervous system via afferent nerve fibers. This information can be processed by the brain as proprioception. The responses of muscle spindles to changes in length also play an important role in regulating the contraction of muscles, for example, by activating motor neurons via the stretch reflex to resist muscle stretch.

Imitation Behaviour in which an individual observes and replicates anothers behaviour

Imitation is a behavior whereby an individual observes and replicates another's behavior. Imitation is also a form of social learning that leads to the "development of traditions, and ultimately our culture. It allows for the transfer of information between individuals and down generations without the need for genetic inheritance." The word imitation can be applied in many contexts, ranging from animal training to politics. The term generally refers to conscious behavior; subconscious imitation is termed mirroring.

Spike-timing-dependent plasticity (STDP) is a biological process that adjusts the strength of connections between neurons in the brain. The process adjusts the connection strengths based on the relative timing of a particular neuron's output and input action potentials. The STDP process partially explains the activity-dependent development of nervous systems, especially with regard to long-term potentiation and long-term depression.

A mirror neuron is a neuron that fires both when an animal acts and when the animal observes the same action performed by another. Thus, the neuron "mirrors" the behavior of the other, as though the observer were itself acting. Such neurons have been directly observed in human and primate species, and in birds.

Motor control is the regulation of movement in organisms that possess a nervous system. Motor control includes reflexes as well as directed movement.

Echopraxia is the involuntary repetition or imitation of another person's actions. Similar to echolalia, the involuntary repetition of sounds and language, it is one of the echophenomena. It has long been recognized as a core feature of Tourette syndrome, and is considered a complex tic, but it also occurs in autism spectrum disorders, schizophrenia and catatonia, aphasia, and disorders involving the startle reflex such as latah. Echopraxia has also been observed in individuals with epilepsy, dementia and autoimmune disorders; the causes of and the link between echopraxia and these disorders is undetermined.

Mu wave Electrical activity in the part of the brain controlling voluntary movement

The sensorimotor mu rhythm, also known as mu wave, comb or wicket rhythms or arciform rhythms, are synchronized patterns of electrical activity involving large numbers of neurons, probably of the pyramidal type, in the part of the brain that controls voluntary movement. These patterns as measured by electroencephalography (EEG), magnetoencephalography (MEG), or electrocorticography (ECoG), repeat at a frequency of 7.5–12.5 Hz, and are most prominent when the body is physically at rest. Unlike the alpha wave, which occurs at a similar frequency over the resting visual cortex at the back of the scalp, the mu rhythm is found over the motor cortex, in a band approximately from ear to ear. A person suppresses mu rhythms when he or she performs a motor action or, with practice, when he or she visualizes performing a motor action. This suppression is called desynchronization of the wave because EEG wave forms are caused by large numbers of neurons firing in synchrony. The mu rhythm is even suppressed when one observes another person performing a motor action or an abstract motion with biological characteristics. Researchers such as V. S. Ramachandran and colleagues have suggested that this is a sign that the mirror neuron system is involved in mu rhythm suppression, although others disagree.

Premovement neuronal activity in neurophysiological literature refers to neuronal modulations that alter the rate at which neurons fire before a subject produces movement. Through experimentation with multiple animals, predominantly monkeys, it has been shown that several regions of the brain are particularly active and involved in initiation and preparation of movement. Two specific membrane potentials, the bereitschaftspotential, or the BP, and contingent negative variation, or the CNV, play a pivotal role in premovement neuronal activity. Both have been shown to be directly involved in planning and initiating movement. Multiple factors are involved with premovement neuronal activity including motor preparation, inhibition of motor response, programming of the target of movement, closed-looped and open-looped tasks, instructed delay periods, short-lead and long-lead changes, and mirror motor neurons.

The simulation theory of empathy holds that humans anticipate and make sense of the behavior of others by activating mental processes that, if they culminated in action, would produce similar behavior. This includes intentional behavior as well as the expression of emotions. The theory says that children use their own emotions to predict what others will do; we project our own mental states onto others.

In neuroethology and the study of learning, anti-Hebbian learning describes a particular class of learning rule by which synaptic plasticity can be controlled. These rules are based on a reversal of Hebb's postulate, and therefore can be simplistically understood as dictating reduction of the strength of synaptic connectivity between neurons following a scenario in which a neuron directly contributes to production of an action potential in another neuron.

The concept of motor cognition grasps the notion that cognition is embodied in action, and that the motor system participates in what is usually considered as mental processing, including those involved in social interaction. The fundamental unit of the motor cognition paradigm is action, defined as the movements produced to satisfy an intention towards a specific motor goal, or in reaction to a meaningful event in the physical and social environments. Motor cognition takes into account the preparation and production of actions, as well as the processes involved in recognizing, predicting, mimicking, and understanding the behavior of other people. This paradigm has received a great deal of attention and empirical support in recent years from a variety of research domains including embodied cognition, developmental psychology, cognitive neuroscience, and social psychology.

Wolfgang Prinz German cognitive psychologist

Wolfgang Prinz is a German cognitive psychologist. He is the director of the Max Planck Institute for Human Cognitive and Brain Sciences in Leipzig, Germany, and an internationally recognized expert in experimental psychology, cognitive psychology and philosophy of mind. He is the founder of the common coding theory between perception and action that has a significant impact in cognitive neuroscience and social cognition.

Embodied cognition Interdisciplinary theory

Embodied cognition is the theory that many features of cognition, whether human or otherwise, are shaped by aspects of an organism's entire body. Sensory and motor systems are seen as fundamentally integrated with cognitive processing. The cognitive features include high-level mental constructs and performance on various cognitive tasks. The bodily aspects involve the motor system, the perceptual system, the bodily interactions with the environment (situatedness), and the assumptions about the world built into the organism's functional structure.

Sensory-motor coupling is the coupling or integration of the sensory system and motor system. Sensorimotor integration is not a static process. For a given stimulus, there is no one single motor command. "Neural responses at almost every stage of a sensorimotor pathway are modified at short and long timescales by biophysical and synaptic processes, recurrent and feedback connections, and learning, as well as many other internal and external variables".

Neurocomputational speech processing is computer-simulation of speech production and speech perception by referring to the natural neuronal processes of speech production and speech perception, as they occur in the human nervous system. This topic is based on neuroscience and computational neuroscience.

Cecilia Heyes British psychologist (born 1960)

Cecilia Heyes is a British psychologist who studies the evolution of the human mind. She is a Senior Research Fellow in Theoretical Life Sciences at All Souls College, and a Professor of Psychology at the University of Oxford. She is also a Fellow of the British Academy, and President of the Experimental Psychology Society.

The bi-directional hypothesis of language and action proposes that the sensorimotor and language comprehension areas of the brain exert reciprocal influence over one another. This hypothesis argues that areas of the brain involved in movement and sensation, as well as movement itself, influence cognitive processes such as language comprehension. In addition, the reverse effect is argued, where it is proposed that language comprehension influences movement and sensation. Proponents of the bi-directional hypothesis of language and action conduct and interpret linguistic, cognitive, and movement studies within the framework of embodied cognition and embodied language processing. Embodied language developed from embodied cognition, and proposes that sensorimotor systems are not only involved in the comprehension of language, but that they are necessary for understanding the semantic meaning of words.

Social cognitive neuroscience is the scientific study of the biological processes underpinning social cognition. Specifically, it uses the tools of neuroscience to study "the mental mechanisms that create, frame, regulate, and respond to our experience of the social world". Social cognitive neuroscience uses the epistemological foundations of cognitive neuroscience, and is closely related to social neuroscience. Social cognitive neuroscience employs human neuroimaging, typically using functional magnetic resonance imaging (fMRI). Human brain stimulation techniques such as transcranial magnetic stimulation and transcranial direct-current stimulation are also used. In nonhuman animals, direct electrophysiological recordings and electrical stimulation of single cells and neuronal populations are utilized for investigating lower-level social cognitive processes.