Axillary bud

Last updated
Axillary buds are located at the intersection of the leaf and stem of a plant. Plant morphology buds axillary.png
Axillary buds are located at the intersection of the leaf and stem of a plant.

The axillary bud (or lateral bud) is an embryonic or organogenic shoot located in the axil of a leaf. Each bud has the potential to form shoots, and may be specialized in producing either vegetative shoots (stems and branches) or reproductive shoots (flowers). Once formed, a bud may remain dormant for some time, or it may form a shoot immediately. [1] :306

Contents

Overview

An axillary bud is an embryonic or organogenic shoot which lies dormant at the junction of the stem and petiole of a plant. [1] :18 It arises exogenously from outer layer of cortex of the stem.

Axillary buds do not become actively growing shoots on plants with strong apical dominance (the tendency to grow just the terminal bud on the main stem). Apical dominance occurs because the shoot apical meristem produces auxin which prevents axillary buds from growing. The axillary buds begin developing when they are exposed to less auxin, for example if the plant naturally has weak apical dominance, if apical dominance is broken by removing the terminal bud, or if the terminal bud has grown far enough away for the auxin to have less of an effect. [2]

Example of an axillary bud. Axillary buds have the potential to form new shoots and become branches or flowers. Searsia angustifolia (Rhus angustifolia) axillary buds 5540.jpg
Example of an axillary bud. Axillary buds have the potential to form new shoots and become branches or flowers.

An example of axillary buds are the eyes of the potato.

Axillary buds only develop if they're not exposed to high levels of auxin from the terminal bud. Axillary-buds.jpg
Axillary buds only develop if they're not exposed to high levels of auxin from the terminal bud.

Effects of auxin

As the apical meristem grows and forms leaves, a region of meristematic cells is left behind at the node between the stem and the leaf. These axillary buds are usually dormant, inhibited by auxin produced by the apical meristem, which is known as apical dominance.

If the apical meristem is removed, or has grown a sufficient distance away from an axillary bud, the axillary bud may become activated (or more appropriately freed from hormone inhibition). Like the apical meristem, axillary buds can develop into a stem or flower.

Diseases that affect axillary buds

Certain plant diseases - notably phytoplasmas - can cause the proliferation of axillary buds, and cause plants to become bushy in appearance.

Related Research Articles

<span class="mw-page-title-main">Bud</span> Immature or embryonic shoot

In botany, a bud is an undeveloped or embryonic shoot and normally occurs in the axil of a leaf or at the tip of a stem. Once formed, a bud may remain for some time in a dormant condition, or it may form a shoot immediately. Buds may be specialized to develop flowers or short shoots or may have the potential for general shoot development. The term bud is also used in zoology, where it refers to an outgrowth from the body which can develop into a new individual.

<span class="mw-page-title-main">Fruit tree pruning</span>

Fruit tree pruning is the cutting and removing of selected parts of a fruit tree. It spans a number of horticultural techniques. Pruning often means cutting branches back, sometimes removing smaller limbs entirely. It may also mean removal of young shoots, buds, and leaves.

<span class="mw-page-title-main">Apical dominance</span> Phenomenon where the central stem grows stronger than other stems

In botany, apical dominance is the phenomenon whereby the main, central stem of the plant is dominant over other side stems; on a branch the main stem of the branch is further dominant over its own side twigs.

<span class="mw-page-title-main">Meristem</span> Type of plant tissue involved in cell proliferation

The meristem is a type of tissue found in plants. It consists of undifferentiated cells capable of cell division. Cells in the meristem can develop into all the other tissues and organs that occur in plants. These cells continue to divide until a time when they get differentiated and then lose the ability to divide.

<span class="mw-page-title-main">Plant hormone</span> Chemical compounds that regulate plant growth and development

Plant hormones are signal molecules, produced within plants, that occur in extremely low concentrations. Plant hormones control all aspects of plant growth and development, from embryogenesis, the regulation of organ size, pathogen defense, stress tolerance and through to reproductive development. Unlike in animals each plant cell is capable of producing hormones. Went and Thimann coined the term "phytohormone" and used it in the title of their 1937 book.

<span class="mw-page-title-main">Auxin</span> Plant hormone

Auxins are a class of plant hormones with some morphogen-like characteristics. Auxins play a cardinal role in coordination of many growth and behavioral processes in plant life cycles and are essential for plant body development. The Dutch biologist Frits Warmolt Went first described auxins and their role in plant growth in the 1920s. Kenneth V. Thimann became the first to isolate one of these phytohormones and to determine its chemical structure as indole-3-acetic acid (IAA). Went and Thimann co-authored a book on plant hormones, Phytohormones, in 1937.

<span class="mw-page-title-main">Cytokinin</span> Class of plant hormones promoting cell division

Cytokinins (CK) are a class of plant hormones that promote cell division, or cytokinesis, in plant roots and shoots. They are involved primarily in cell growth and differentiation, but also affect apical dominance, axillary bud growth, and leaf senescence.

Plant embryonic development, also plant embryogenesis is a process that occurs after the fertilization of an ovule to produce a fully developed plant embryo. This is a pertinent stage in the plant life cycle that is followed by dormancy and germination. The zygote produced after fertilization must undergo various cellular divisions and differentiations to become a mature embryo. An end stage embryo has five major components including the shoot apical meristem, hypocotyl, root meristem, root cap, and cotyledons. Unlike the embryonic development in animals, and specifically in humans, plant embryonic development results in an immature form of the plant, lacking most structures like leaves, stems, and reproductive structures. However, both plants and animals including humans, pass through a phylotypic stage that evolved independently and that causes a developmental constraint limiting morphological diversification.

<span class="mw-page-title-main">Babaco</span> Hybrid species of tree

The babaco, is a hybrid cultivar in the genus Vasconcellea from Ecuador. It is a hybrid between Vasconcellea cundinamarcensis, and Vasconcellea stipulata.

<span class="mw-page-title-main">Primordium</span> Organ in the earliest recognizable stage of embryonic development

A primordium in embryology, is an organ or tissue in its earliest recognizable stage of development. Cells of the primordium are called primordial cells. A primordium is the simplest set of cells capable of triggering growth of the would-be organ and the initial foundation from which an organ is able to grow. In flowering plants, a floral primordium gives rise to a flower.

This page provides a glossary of plant morphology. Botanists and other biologists who study plant morphology use a number of different terms to classify and identify plant organs and parts that can be observed using no more than a handheld magnifying lens. This page provides help in understanding the numerous other pages describing plants by their various taxa. The accompanying page—Plant morphology—provides an overview of the science of the external form of plants. There is also an alphabetical list: Glossary of botanical terms. In contrast, this page deals with botanical terms in a systematic manner, with some illustrations, and organized by plant anatomy and function in plant physiology.

Important structures in plant development are buds, shoots, roots, leaves, and flowers; plants produce these tissues and structures throughout their life from meristems located at the tips of organs, or between mature tissues. Thus, a living plant always has embryonic tissues. By contrast, an animal embryo will very early produce all of the body parts that it will ever have in its life. When the animal is born, it has all its body parts and from that point will only grow larger and more mature. However, both plants and animals pass through a phylotypic stage that evolved independently and that causes a developmental constraint limiting morphological diversification.

<span class="mw-page-title-main">Lateral shoot</span>

A lateral shoot, commonly known as a branch, is a part of a plant's shoot system that develops from axillary buds on the stem's surface, extending laterally from the plant's stem.

<span class="mw-page-title-main">Woody plant</span> Plant that produces wood and has a hard stem

A woody plant is a plant that produces wood as its structural tissue and thus has a hard stem. In cold climates, woody plants further survive winter or dry season above ground, as opposed to herbaceous plants that die back to the ground until spring.

<span class="mw-page-title-main">Plant stem</span> Structural axis of a vascular plant

A stem is one of two main structural axes of a vascular plant, the other being the root. It supports leaves, flowers and fruits, transports water and dissolved substances between the roots and the shoots in the xylem and phloem, stores nutrients, and produces new living tissue. The stem can also be called halm or haulm or culms.

This glossary of viticultural terms list some of terms and definitions involved in growing grapes for use in winemaking.

<span class="mw-page-title-main">Plant tissue culture</span> Growing plant cells under known conditions

Plant tissue culture is a collection of techniques used to maintain or grow plant cells, tissues, or organs under sterile conditions on a nutrient culture medium of known composition. It is widely used, to produce clones of a plant in a method known as micropropagation. Different techniques in plant tissue culture may offer certain advantages over traditional methods of propagation, including:

Primary growth in plants is growth that takes place from the tips of roots or shoots. It leads to lengthening of roots and stems and sets the stage for organ formation. It is distinguished from secondary growth that leads to widening. Plant growth takes place in well defined plant locations. Specifically, the cell division and differentiation needed for growth occurs in specialized structures called meristems. These consist of undifferentiated cells capable of cell division. Cells in the meristem can develop into all the other tissues and organs that occur in plants. These cells continue to divide until they differentiate and then lose the ability to divide. Thus, the meristems produce all the cells used for plant growth and function.

<span class="mw-page-title-main">Thorns, spines, and prickles</span> Hard, rigid extensions or modifications of leaves, roots, stems or buds with sharp, stiff ends

In plant morphology, thorns, spines, and prickles, and in general spinose structures, are hard, rigid extensions or modifications of leaves, roots, stems, or buds with sharp, stiff ends, and generally serve the same function: physically deterring animals from eating the plant material.

Topophysis occurs when scions, buddings, or root cuttings continue to grow in the same way after grafting as they had while growing on the ortet.

References

  1. 1 2 Adrian D. Bell; Alan Bryan (2008). Plant Form: An Illustrated Guide to Flowering Plant Morphology. Timber Press. ISBN   978-0-88192-850-1.
  2. Linda Berg (23 March 2007). Introductory Botany: Plants, People, and the Environment, Media Edition. Cengage Learning. p. 238. ISBN   978-0-534-46669-5.