BRP-PACU

Last updated

BRP-PACU is a dual channel FFT audio analysis tool. It is designed to be used with an omnidirectional calibrated microphone to configure any sound system with an appropriate equalization and delay. It compares the output of the system to the input of the system to obtain the transfer function [1] of the system. These data allow one to perform final equalization using just the input/output of the DSP or any other device used for Equalization.

Contents

Theoretical basis

This software program uses a Transfer Function Measurement method to compare the output of a (unprocessed) loud-speaker system and room combination to the input signal which is usually filtered pseudorandom noise. [2] Because the sound has a propagation time from the exit point of the transducer to the measurement device, a delay must be inserted in the reference signal to compensate. This delay is automatically found by the software to aid in practical system measurement.

Supported platforms

Currently the only supported platforms are Linux and Mac OS X because it relies on POSIX Threads. It also is written using floating point processing, making most embedded Linux device support difficult.

Features

Licensing and availability

The software is licensed under the GPL-2.0-or-later. It is available from SourceForge as C code.

Future development

Related Research Articles

<span class="mw-page-title-main">Sound card</span> Expansion card that provides input and output of audio signals

A sound card is an internal expansion card that provides input and output of audio signals to and from a computer under the control of computer programs. The term sound card is also applied to external audio interfaces used for professional audio applications.

<span class="mw-page-title-main">Signal processing</span> Field of electrical engineering

Signal processing is an electrical engineering subfield that focuses on analyzing, modifying and synthesizing signals, such as sound, images, potential fields, seismic signals, altimetry processing, and scientific measurements. Signal processing techniques are used to optimize transmissions, digital storage efficiency, correcting distorted signals, subjective video quality, and to also detect or pinpoint components of interest in a measured signal.

In signal processing, distortion is the alteration of the original shape of a signal. In communications and electronics it means the alteration of the waveform of an information-bearing signal, such as an audio signal representing sound or a video signal representing images, in an electronic device or communication channel.

<span class="mw-page-title-main">Advanced Linux Sound Architecture</span> Software framework

Advanced Linux Sound Architecture (ALSA) is a software framework and part of the Linux kernel that provides an application programming interface (API) for sound card device drivers.

<span class="mw-page-title-main">Mixing console</span> Device used for audio mixing

A mixing console or mixing desk is an electronic device for mixing audio signals, used in sound recording and reproduction and sound reinforcement systems. Inputs to the console include microphones, signals from electric or electronic instruments, or recorded sounds. Mixers may control analog or digital signals. The modified signals are summed to produce the combined output signals, which can then be broadcast, amplified through a sound reinforcement system or recorded.

<span class="mw-page-title-main">Preamplifier</span> Electronic amplifier that converts weak signal into strong signal

A preamplifier, also known as a preamp, is an electronic amplifier that converts a weak electrical signal into an output signal strong enough to be noise-tolerant and strong enough for further processing, or for sending to a power amplifier and a loudspeaker. Without this, the final signal would be noisy or distorted. They are typically used to amplify signals from analog sensors such as microphones and pickups. Because of this, the preamplifier is often placed close to the sensor to reduce the effects of noise and interference.

<span class="mw-page-title-main">Virtual Studio Technology</span> Audio plug-in software interface

Virtual Studio Technology (VST) is an audio plug-in software interface that integrates software synthesizers and effects units into digital audio workstations. VST and similar technologies use digital signal processing to simulate traditional recording studio hardware in software. Thousands of plugins exist, both commercial and freeware, and many audio applications support VST under license from its creator, Steinberg.

<span class="mw-page-title-main">Sound reinforcement system</span> Amplified sound system for public events

A sound reinforcement system is the combination of microphones, signal processors, amplifiers, and loudspeakers in enclosures all controlled by a mixing console that makes live or pre-recorded sounds louder and may also distribute those sounds to a larger or more distant audience. In many situations, a sound reinforcement system is also used to enhance or alter the sound of the sources on the stage, typically by using electronic effects, such as reverb, as opposed to simply amplifying the sources unaltered.

<span class="mw-page-title-main">LiVES</span>

LiVES (LiVES Editing System) is a free and open-source video editing software and VJ tool, released under the GNU General Public License version 3 or later. There are binary versions available for most popular Linux distributions (including Debian, Ubuntu, Fedora, Suse, Gentoo, Slackware, Arch Linux, Mandriva and Mageia). There are also ports for BSD, and it will run under Solaris and IRIX. It has been compiled under OS X Leopard, but not thoroughly tested on that platform. In early 2019, a version for Microsoft Windows was announced, with a release slated for in the second half of 2019.

Sound eXchange (SoX) is a cross-platform audio editing software. It has a command-line interface, and is written in standard C. It is free software, licensed under GPL-2.0-or-later, with libsox licensed under LGPL-2.1-or-later, and distributed by Chris Bagwell through SourceForge.

<span class="mw-page-title-main">Digital room correction</span> Acoustics process

Digital room correction is a process in the field of acoustics where digital filters designed to ameliorate unfavorable effects of a room's acoustics are applied to the input of a sound reproduction system. Modern room correction systems produce substantial improvements in the time domain and frequency domain response of the sound reproduction system.

<span class="mw-page-title-main">Korg MS2000</span> Synthesizer released in 2000

The Korg MS2000 is a virtual analog synthesizer produced by the Japanese electronic musical instrument manufacturer Korg.

<span class="mw-page-title-main">PulseAudio</span> Sound server for Unix-like operating systems

PulseAudio is a network-capable sound server program distributed via the freedesktop.org project. It runs mainly on Linux, including Windows Subsystem for Linux on Microsoft Windows and Termux on Android; various BSD distributions such as FreeBSD, OpenBSD, and macOS; as well as Illumos distributions and the Solaris operating system. It serves as a middleware in between applications and hardware and handles raw PCM audio streams.

Analysis of sound and acoustics plays a role in such engineering tasks as product design, production test, machine performance, and process control. For instance, product design can require modification of sound level or noise for compliance with standards from ANSI, IEC, and ISO. The work might also involve design fine-tuning to meet market expectations. Here, examples include tweaking an automobile door latching mechanism to impress a consumer with a satisfying click or modifying an exhaust manifold to change the tone of an engine's rumble. Aircraft designers are also using acoustic instrumentation to reduce the noise generated on takeoff and landing.

<span class="mw-page-title-main">Smaart</span> Audio measurement software

Smaart is a suite of audio and acoustical measurements and instrumentation software tools introduced in 1996 by JBL's professional audio division. It is designed to help the live sound engineer optimize sound reinforcement systems before public performance and actively monitor acoustical parameters in real time while an audio system is in use. Most earlier analysis systems required specific test signals sent through the sound system, ones that would be unpleasant for the audience to hear. Smaart is a source-independent analyzer and therefore will work effectively with a variety of test signals including speech or music.

<span class="mw-page-title-main">Device driver synthesis and verification</span>

Device drivers are programs which allow software or higher-level computer programs to interact with a hardware device. These software components act as a link between the devices and the operating systems, communicating with each of these systems and executing commands. They provide an abstraction layer for the software above and also mediate the communication between the operating system kernel and the devices below.

<span class="mw-page-title-main">Audio analyzer</span> Test and measurement instrument

An audio analyzer is a test and measurement instrument used to objectively quantify the audio performance of electronic and electro-acoustical devices. Audio quality metrics cover a wide variety of parameters, including level, gain, noise, harmonic and intermodulation distortion, frequency response, relative phase of signals, interchannel crosstalk, and more. In addition, many manufacturers have requirements for behavior and connectivity of audio devices that require specific tests and confirmations.

<span class="mw-page-title-main">PicoScope (software)</span>

PicoScope is computer software for real-time signal acquisition of Pico Technology oscilloscopes. PicoScope is supported on Microsoft Windows, Mac OS X, Debian and Ubuntu platforms. PicoScope is primarily used to view and analyze real-time signals from PicoScope oscilloscopes and data loggers. PicoScope software enables analysis using FFT, a spectrum analyser, voltage-based triggers, and the ability to save/load waveforms to disk. PicoScope is compatible with parallel port oscilloscopes and the newer USB oscilloscopes.

This glossary of electrical and electronics engineering is a list of definitions of terms and concepts related specifically to electrical engineering and electronics engineering. For terms related to engineering in general, see Glossary of engineering.

References

  1. The transfer function is defined by in, e.g., Birkhoff, Garrett; Rota, Gian-Carlo (1978). Ordinary differential equations. New York: John Wiley & Sons. ISBN   0-471-05224-8.
  2. The basic principle of the transfer function analysis is a dual channel measurement where one channel is designated as "known" and the other channel is "unknown". , McCarthy, Bob (2007). Sound Systems: Modern Techniques and Tools for Sound System Design and Alignment. New York: Focal Press. ISBN   978-0-240-52020-9.