Babler oxidation

Last updated

The Babler oxidation, also known as the Babler-Dauben oxidation, is an organic reaction for the oxidative transposition of tertiary allylic alcohols to enones using pyridinium chlorochromate (PCC): [1]

Contents

Babler oxidation of tertiary allylic alcohols Babler oxidation en.svg
Babler oxidation of tertiary allylic alcohols

It is named after James Babler who first reported the reaction in 1976 [1] [2] and William Dauben who extended the scope to cyclic systems in 1977, thereby significantly increasing the synthetic utility: [1] [3]

Babler-Dauben oxidation of cyclic tertiary allylic alcohols Dauben oxidation en.svg
Babler-Dauben oxidation of cyclic tertiary allylic alcohols

The reaction produces the desired enone product to high yield (typically >75%), is operationally simple and does not require air-free techniques or heating. [1] It suffers, however, from the very high toxicity and environmental hazard posed by the hexavalent chromium PCC oxidising reagent.

The solvent of choice is usually dry dichloromethane (DCM) or chloroform (CHCl3). [1] [2]

The reaction has been utilised as a step in the total syntheses of various compounds, e.g. of morphine. [1] [4]

Mechanism

Babler oxidation mechanism Babler Oxydation Mechanism MV1.svg
Babler oxidation mechanism

The reaction proceeds through the formation of a chromate ester (1) from nucleophilic attack of the chlorochromate by the allylic alcohol. The ester then undergoes a [3,3]-sigmatropic shift to create the isomeric chromate ester (2). Finally, oxidation of this intermediate yields the α,β-unsaturated aldehyde or ketone product (3). [1]

Alternative reagents

Concerns about the high toxicity and carcinogenicity of the PCC oxidant, as well as the role of chromium(VI) species as environmental pollutants in groundwater, have led to investigations for the replacement of PCC in the reaction. One successful alternative reported by multiple sources involves the use of N-oxoammonium salts derived from TMP: [1] [5]

Babler-Dauben oxidation of tertiary alcohols using oxoammonium salt oxidiser Oxoammonium Babler oxidation.svg
Babler-Dauben oxidation of tertiary alcohols using oxoammonium salt oxidiser

The oxoammonium salts with non-coordinating anions are used (such as tetrafluoroborate, perchlorate, hexafluorophosphate or hexafluoroantimonate). [5] The oxidiser is added in stoichiometric amounts, usually 1.5 eq of alcohol.

A different approach to minimise toxic chromium(VI) use involves performing the reaction with only a catalytic amount of PCC and an excess of another oxidant, to re-oxidise the chromium species as part of the catalytic cycle. Commonly reported stoichiometric reagents for this purpose include di-tert-butyl peroxide, 2-iodoxybenzoic acid or periodates. [1]

Secondary alcohols

The Babler-Dauben oxidation of secondary allylic alcohols proves more difficult to control than that of tertiary analogues, as along with the desired product (a) a mixture with high proportion of side-products (b) and (c) is obtained: [1]

Babler-Dauben oxidation of secondary alcohols and side-products Babler secondary alcohol oxidation.svg
Babler-Dauben oxidation of secondary alcohols and side-products

The yield of a is found to be maximised when PCC is not used in stoichiometric quantities but as a co-oxidant; the best effect (50–70% yield of a) is achieved for orthoperiodic acid as the main oxidiser with a 5% molar PCC. [1] Acetonitrile (MeCN) over the usual DCM is used as the solvent.

Notably, in contrast to the general oxidation of tertiary alcohols, the secondary alcohol case only works with aromatic substrates (Ar-: an aryl group). This, along with the strongly acidic conditions due to the stoichiometric amount of periodic acid, suggest that the initially formed chromate ester isomerises through a carbocationic route rather than a sigmatotropic reaction as for tertiary alcohols. [1]

See also

Related Research Articles

Elias James Corey American chemist (born 1928)

Elias James Corey is an American organic chemist. In 1990, he won the Nobel Prize in Chemistry "for his development of the theory and methodology of organic synthesis", specifically retrosynthetic analysis. Regarded by many as one of the greatest living chemists, he has developed numerous synthetic reagents, methodologies and total syntheses and has advanced the science of organic synthesis considerably.

The term chromic acid is usually used for a mixture made by adding concentrated sulfuric acid to a dichromate, which may contain a variety of compounds, including solid chromium trioxide. This kind of chromic acid may be used as a cleaning mixture for glass. Chromic acid may also refer to the molecular species, H2CrO4 of which the trioxide is the anhydride. Chromic acid features chromium in an oxidation state of +6 (or VI). It is a strong and corrosive oxidising agent.

Allyl group

An allyl group is a substituent with the structural formula H2C=CH−CH2R, where R is the rest of the molecule. It consists of a methylene bridge (−CH2−) attached to a vinyl group (−CH=CH2). The name is derived from the Latin word for garlic, Allium sativum. In 1844, Theodor Wertheim isolated an allyl derivative from garlic oil and named it "Schwefelallyl". The term allyl applies to many compounds related to H2C=CH−CH2, some of which are of practical or of everyday importance, for example, allyl chloride. Allylation is any chemical reaction that adds an allyl group to a substrate.

Pyridinium chlorochromate Chemical compound

Pyridinium chlorochromate (PCC) is a yellow-orange salt with the formula [C5H5NH]+[CrO3Cl]. It is a reagent in organic synthesis used primarily for oxidation of alcohols to form carbonyls. A variety of related compounds are known with similar reactivity. PCC offers the advantage of the selective oxidation of alcohols to aldehydes or ketones, whereas many other reagents are less selective.

Chromium trioxide Chemical compound

Chromium trioxide (also known as chromium(VI) oxide or chromic anhydride) is an inorganic compound with the formula CrO3. It is the acidic anhydride of chromic acid, and is sometimes marketed under the same name. This compound is a dark-purple solid under anhydrous conditions, bright orange when wet and which dissolves in water concomitant with hydrolysis. Millions of kilograms are produced annually, mainly for electroplating. Chromium trioxide is a powerful oxidiser and a carcinogen.

Dess–Martin periodinane Chemical reagent

Dess–Martin periodinane (DMP) is a chemical reagent used in the Dess–Martin oxidation, oxidizing primary alcohols to aldehydes and secondary alcohols to ketones. This periodinane has several advantages over chromium- and DMSO-based oxidants that include milder conditions, shorter reaction times, higher yields, simplified workups, high chemoselectivity, tolerance of sensitive functional groups, and a long shelf life. However, use on an industrial scale is made difficult by its cost and its potentially explosive nature. It is named after the American chemists Daniel Benjamin Dess and James Cullen Martin who developed the reagent in 1983. It is based on IBX, but due to the acetate groups attached to the central iodine atom, DMP is much more reactive than IBX and is much more soluble in organic solvents.

Periodic acid Chemical compound

Periodic acid is the highest oxoacid of iodine, in which the iodine exists in oxidation state +7. Like all periodates it can exist in two forms: orthoperiodic acid, with the chemical formula H5IO6 and metaperiodic acid, which has the formula HIO4.

Dihydroxylation is the process by which an alkene is converted into a vicinal diol. Although there are many routes to accomplish this oxidation, the most common and direct processes use a high-oxidation-state transition metal. The metal is often used as a catalyst, with some other stoichiometric oxidant present. In addition, other transition metals and non-transition metal methods have been developed and used to catalyze the reaction.

Oppenauer oxidation, named after Rupert Viktor Oppenauer, is a gentle method for selectively oxidizing secondary alcohols to ketones.

Cornforth reagent Chemical compound

The pyridinium dichromate(PDC) or Cornforth reagent is a pyridinium salt of dichromate with the chemical formula [C5H5NH]2[Cr2O7]. This compound is named after the Australian-British chemist Sir John Warcup Cornforth (b. 1917) who introduced it in 1962. The Cornforth reagent is a strong oxidizing agent which can convert primary and secondary alcohols to aldehydes and ketones respectively. In its chemical structure and functions it is closely related to other compounds made from hexavalent chromium oxide, such as pyridinium chlorochromate and Collins reagent. Because of their toxicity, these reagents are rarely used nowadays.

Oxidation of primary alcohols to carboxylic acids

The oxidation of primary alcohols to carboxylic acids is an important oxidation reaction in organic chemistry.

The oxidation of secondary alcohols to ketones is an important oxidation reaction in organic chemistry.

Alcohol oxidation is a class of organic reactions in which the alcohol functional group is converted into another functional group in which carbon carries a higher oxidation state.

Oxidation with chromium(VI) complexes involves the conversion of alcohols to carbonyl compounds or more highly oxidized products through the action of molecular chromium(VI) oxides and salts. The principal reagents are Collins reagent, PDC, and PCC. These reagents represent improvements over inorganic chromium(VI) reagents such as Jones reagent.

Oxoammonium-catalyzed oxidation

Oxoammonium-catalyzed oxidation reactions involve the conversion of organic substrates to more highly oxidized materials through the action of an N-oxoammonium species. Nitroxides may also be used in catalytic amounts in the presence of a stoichiometric amount of a terminal oxidant. Nitroxide radical species used are either 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) or derivatives thereof.

Jones oxidation

The Jones oxidation is an organic reaction for the oxidation of primary and secondary alcohols to carboxylic acids and ketones, respectively. It is named after its discoverer, Sir Ewart Jones. The reaction was an early method for the oxidation of alcohols. Its use has subsided because milder, more selective reagents have been developed, e.g. Collins reagent.

A chromate ester is a chemical structure that contains a chromium atom (symbol Cr) in a +6 oxidation state that is connected via an oxygen (O) linkage to a carbon (C) atom. The Cr itself is in its chromate form, with several oxygens attached, and the Cr–O–C attachment makes this chemical group structurally similar to other ester functional groups. They can be synthesized from various chromium(VI) metal compounds, such as CrO3, chromium chloride complexes, and aqueous chromate ions, and tend to react via redox reactions to liberate chromium(IV).

The Riley oxidation is a selenium dioxide-mediated oxidation of methylene groups adjacent to carbonyls. It was first reported by Riley and co-workers in 1932. In the decade that ensued, selenium-mediated oxidation rapidly expanded in use, and in 1939, Guillemonat and co-workers disclosed the selenium dioxide-mediated oxidation of olefins at the allylic position. Today, selenium-dioxide-mediated oxidation of methylene groups to alpha ketones and at the allylic position of olefins is known as the Riley Oxidation.

Sulfonium-based oxidations of alcohols to aldehydes summarizes a group of organic reactions that transform a primary alcohol to the corresponding aldehyde (and a secondary alcohol to the corresponding ketone). Selective oxidation of alcohols to aldehydes requires circumventing over-oxidation to the carboxylic acid. One popular approach are methods that proceed through intermediate alkoxysulfonium species (RO−SMe+
2
X-
, e.g. compound 6) as detailed here. Since most of these methods employ dimethylsulfoxide (DMSO) as oxidant and generate dimethylsulfide, these are often colloquially summarized as DMSO-oxidations. Conceptually, generating an aldehyde and dimethylsulfide from an alcohol and DMSO requires a dehydrating agent for removal of H2O, ideally an electrophile simultaneously activating DMSO. In contrast, methods generating the sulfonium intermediate from dimethylsulfide do not require a dehydrating agent. Closely related are oxidations mediated by dimethyl selenoxide and by dimethyl selenide.

Alpha-beta unsaturated carbonyl compounds Functional group of organic compounds

α,β-unsaturated carbonyl compounds are organic compounds with the general structure (O=CR)−Cα=Cβ-R. Such compounds include enones and enals. In these compounds the carbonyl group is conjugated with an alkene. Unlike the case for carbonyls without a flanking alkene group, α,β-unsaturated carbonyl compounds are susceptible to attack by nucleophiles at the β carbon. This pattern of reactivity is called vinylogous. Examples of unsaturated carbonyls are acrolein (propenal), mesityl oxide, acrylic acid, and maleic acid. Unsaturated carbonyls can be prepared in the laboratory in an aldol reaction and in the Perkin reaction.

References

  1. 1 2 3 4 5 6 7 8 9 10 11 12 Killoran, Patrick M.; Rossington, Steven B.; Wilkinson, James A.; Hadfield, John A. (2016-08-31). "Expanding the scope of the Babler–Dauben oxidation: 1,3-oxidative transposition of secondary allylic alcohols". Tetrahedron Letters. 57 (35): 3954–3957. doi:10.1016/j.tetlet.2016.07.076. ISSN   0040-4039.
  2. 1 2 Babler, James H.; Coghlan, Michael J. (1976-01-01). "A Facile Method for the Bishomologation of Ketones to α,β-Unsaturated Aldehydes: Application to the Synthesis of the Cyclohexanoid Components of the Boll Weevil Sex Attractant". Synthetic Communications. 6 (7): 469–474. doi:10.1080/00397917608082626. ISSN   0039-7911.
  3. Dauben, William G.; Michno, Drake M. (1977-03-01). "Direct oxidation of tertiary allylic alcohols. A simple and effective method for alkylative carbonyl transposition". The Journal of Organic Chemistry. 42 (4): 682–685. doi:10.1021/jo00424a023. ISSN   0022-3263.
  4. Nagata, Hiroshi; Miyazawa, Norio; Ogasawara, Kunio (2001-01-01). "A concise route to (−)-morphine". Chemical Communications (12): 1094–1095. doi:10.1039/B101668G. ISSN   1364-548X.
  5. 1 2 Shibuya, Masatoshi; Tomizawa, Masaki; Iwabuchi, Yoshiharu (2008-06-01). "Oxidative Rearrangement of Tertiary Allylic Alcohols Employing Oxoammonium Salts". The Journal of Organic Chemistry. 73 (12): 4750–4752. doi:10.1021/jo800634r. ISSN   0022-3263. PMID   18500838.