The building balance point temperature is the outdoor air temperature when the heat gains of the building are equal to the heat losses. [1] Internal heat sources due to electric lighting, mechanical equipment, body heat, and solar radiation may offset the need for additional heating although the outdoor temperature may be below the thermostat set-point temperature.
The building balance point temperature is the base temperature necessary to calculate heating degree day to anticipate the annual energy demand to heat a building. The balance point temperature is a consequence of building design and function rather than outdoor weather conditions. [2]
The balance point temperature is mathematically defined as:
Equation 1: tbalance = tthermostat - QIHG + QSOL/Ubldg
Where:
This equation is simplified by assuming steady state heat transfer between the building and the environment and only provides an approximate building balance point temperature. The 2013 ASHRAE Handbook – Fundamentals, Chapter F18 provides more rigorous methodologies to calculate the heating loads in a nonresidential buildings. The ASHRAE heat balance method, for example, fully delineates the heat transfer through the inner and outer boundaries of the building wall by incorporating radiative (e.g. sun, indoor surfaces), convective (e.g. indoor and outdoor air), and conductive (e.g. inner to outer boundary) modes of heat transfer. [1]
In real-world scenarios, the balance point may be determined in one of two ways. In the energy signature method, a plot is created mapping energy consumption against mean outdoor temperature. The point on the chart at which weather-independent and weather-dependent electricity or gas demand intersect is the balance point temperature. This method only works if large quantities of data on the building energy use are available, preferably on a daily resolution. [3]
In the performance line method multiple plots of energy consumption against heating degree days (HDD) and cooling degree days (CDD) are created, using a range of balance point temperatures to calculate the degree days. Best-fit second-order polynomials of the form y=ax2+bx+c are then applied to the plots, which show various levels of curvature across the range of the data depending on the accuracy of the balance point temperature. In plots with overly high balance point temperatures the a variable is positive, resulting in an upward curve, while plots with low balance point temperatures curve downward due to a negative a variable. The plot in which a is closest to zero represents the most accurate balance point temperature. This method may be applied to buildings in which the availability of energy use data is less granular, perhaps only available on a weekly or monthly basis. [4]
A building's thermal characteristics may be described as either internally load dominated or envelope load dominated, each having a characteristic balance point temperature.
Internally load dominated buildings have high internal heat gains from occupants, lighting and equipment. These buildings are usually compact with a low surface-area-to-volume ratio and many exterior walls in each room. The high internal heat gains allow the building to not be strongly affected by outdoor conditions. Large office spaces, schools and auditoriums are typical examples of internal load dominated buildings where the balance point temperature is around 10 °C (50 °F). [2]
Envelope load dominated buildings have significant heat loss through the building envelope. These buildings have a high surface-area-to-volume ratio with few exterior walls in each room. Outdoor conditions strongly affect these buildings due to a lack of internal heat gains. Residences, small office buildings and schools are typical examples of skin load dominated buildings where the balance point temperature is set around 15 °C (59 °F). [2]
Solar gains can hamper internal load dominated buildings, contributing to overheating, while helping skin dominated buildings that lose heat due to poor envelope performance. Therefore, architects and building designers must strategically control solar gains based on the building characteristics. [1]
The concepts of degree days and balance point temperature are interconnected. By summing the differences between the balance point temperature and the outdoor temperature over a period of time, the resultant value is degree-time. Use of daily mean temperature data in the summation results in degree days, although degree hours or even degree minutes may be possible depending upon the granularity of the data used. The degree day is often further broken down into heating degree days (HDD), in which energy will need to be spent to heat the space, and cooling degree days (CDD), in which the space will need cooling (either through an input of energy or by natural means). This is achieved by counting any positive difference between the balance point temperature and the outdoor air temperature as HDD, and either discarding the remaining data or considering them to be CDD. Although degree days are calculated based on recorded energy use in the building, the balance point temperature of the building determines whether a building will annually have more HDD or CDD. A low balance point temperature (relative to the local climate) indicates that the building will be more likely to need additional cooling, while a high balance point temperature indicates that it is more likely to need heating. Ideally, a building should be designed such that the balance point temperature is as near as possible to the average outdoor temperature of the local climate, which will minimize both the CDD and HDD. [5]
Balance point temperature is frequently used in modeling as a base by which to calculate the energy demand of buildings due to various stressors. [6] [7] This is achieved by calculating HDD or CDD based on the balance point, and extending these results to estimate energy use. A sensitivity analysis can also be conducted based on the effects of changing the balance point temperature, which may demonstrate the effect on a model of altering internal loads or envelope conditions of a building. [6]
Heating, ventilation, and air conditioning (HVAC) is the use of various technologies to control the temperature, humidity, and purity of the air in an enclosed space. Its goal is to provide thermal comfort and acceptable indoor air quality. HVAC system design is a subdiscipline of mechanical engineering, based on the principles of thermodynamics, fluid mechanics, and heat transfer. "Refrigeration" is sometimes added to the field's abbreviation as HVAC&R or HVACR, or "ventilation" is dropped, as in HACR.
A Trombe wall is a massive equator-facing wall that is painted a dark color in order to absorb thermal energy from incident sunlight and covered with a glass on the outside with an insulating air-gap between the wall and the glaze. A Trombe wall is a passive solar building design strategy that adopts the concept of indirect-gain, where sunlight first strikes a solar energy collection surface in contact with a thermal mass of air. The sunlight absorbed by the mass is converted to thermal energy (heat) and then transferred into the living space.
In passive solar building design, windows, walls, and floors are made to collect, store, reflect, and distribute solar energy, in the form of heat in the winter and reject solar heat in the summer. This is called passive solar design because, unlike active solar heating systems, it does not involve the use of mechanical and electrical devices.
In building design, thermal mass is a property of the mass of a building that enables it to store heat and provide inertia against temperature fluctuations. It is sometimes known as the thermal flywheel effect. The thermal mass of heavy structural elements can be designed to work alongside a construction's lighter thermal resistance components to create energy efficient buildings.
Passive house is a voluntary standard for energy efficiency in a building, which reduces the building's ecological footprint. Conforming to these standards results in ultra-low energy buildings that require little energy for space heating or cooling. A similar standard, MINERGIE-P, is used in Switzerland. Standards are available for residential properties and several office buildings, schools, kindergartens and a supermarket have also been constructed to the standard. The design is not an attachment or supplement to architectural design, but a design process that integrates with architectural design. Although it is generally applied to new buildings, it has also been used for refurbishments.
Heating degree day (HDD) is a measurement designed to quantify the demand for energy needed to heat a building. HDD is derived from measurements of outside air temperature. The heating requirements for a given building at a specific location are considered to be directly proportional to the number of HDD at that location.
In the United States, the efficiency of air conditioners is often rated by the seasonal energy efficiency ratio (SEER) which is defined by the Air Conditioning, Heating, and Refrigeration Institute, a trade association, in its 2008 standard AHRI 210/240, Performance Rating of Unitary Air-Conditioning and Air-Source Heat Pump Equipment. A similar standard is the European seasonal energy efficiency ratio (ESEER).
A degree day is a measure of heating or cooling. Total degree days from an appropriate starting date are used to plan the planting of crops and management of pests and pest control timing. Weekly or monthly degree-day figures may also be used within an energy monitoring and targeting scheme to monitor the heating and cooling costs of climate controlled buildings, while annual figures can be used for estimating future costs.
Electric heating is a process in which electrical energy is converted directly to heat energy. Common applications include space heating, cooking, water heating and industrial processes. An electric heater is an electrical device that converts an electric current into heat. The heating element inside every electric heater is an electrical resistor, and works on the principle of Joule heating: an electric current passing through a resistor will convert that electrical energy into heat energy. Most modern electric heating devices use nichrome wire as the active element; the heating element, depicted on the right, uses nichrome wire supported by ceramic insulators.
Underfloor heating and cooling is a form of central heating and cooling that achieves indoor climate control for thermal comfort using hydronic or electrical heating elements embedded in a floor. Heating is achieved by conduction, radiation and convection. Use of underfloor heating dates back to the Neoglacial and Neolithic periods.
Passive cooling is a building design approach that focuses on heat gain control and heat dissipation in a building in order to improve the indoor thermal comfort with low or no energy consumption. This approach works either by preventing heat from entering the interior or by removing heat from the building.
Solar gain is the increase in thermal energy of a space, object or structure as it absorbs incident solar radiation. The amount of solar gain a space experiences is a function of the total incident solar irradiance and of the ability of any intervening material to transmit or resist the radiation.
HVAC is a major sub discipline of mechanical engineering. The goal of HVAC design is to balance indoor environmental comfort with other factors such as installation cost, ease of maintenance, and energy efficiency. The discipline of HVAC includes a large number of specialized terms and acronyms, many of which are summarized in this glossary.
Solar air heating is a solar thermal technology in which the energy from the sun, insolation, is captured by an absorbing medium and used to heat air. Solar air heating is a renewable energy heating technology used to heat or condition air for buildings or process heat applications. It is typically the most cost-effective out of all the solar technologies, especially in commercial and industrial applications, and it addresses the largest usage of building energy in heating climates, which is space heating and industrial process heating.
The cooling load temperature difference (CLTD)calculation method, also called the cooling load factor(CLF) or solar cooling load factor(SCL) method, is a method of estimating the cooling load or heating load of a building. It was introduced in the 1979 ASHRAE handbook.
ANSI/ASHRAE/IES Standard 90.1: Energy Standard for Buildings Except Low-Rise Residential Buildings is an American National Standards Institute (ANSI) standard published by ASHRAE and jointly sponsored by the Illuminating Engineering Society (IES) that provides minimum requirements for energy efficient designs for buildings except for low-rise residential buildings. The original standard, ASHRAE 90, was published in 1975. There have been multiple editions to it since. In 1999 the ASHRAE Board of Directors voted to place the standard on continuous maintenance, based on rapid changes in energy technology and energy prices. This allows it to be updated multiple times in a year. The standard was renamed ASHRAE 90.1 in 2001. It has since been updated in 2004, 2007, 2010, 2013, 2016, and 2019 to reflect newer and more efficient technologies.
The Glossary of Geothermal Heating and Cooling provides definitions of many terms used within the Geothermal heat pump industry. The terms in this glossary may be used by industry professionals, for education materials, and by the general public.
Passive survivability refers to a building's ability to maintain critical life-support conditions in the event of extended loss of power, heating fuel, or water. This idea proposes that designers should incorporate ways for a building to continue sheltering inhabitants for an extended period of time during and after a disaster situation, whether it be a storm that causes a power outage, a drought which limits water supply, or any other possible event.
ANSI/ASHRAE Standard 55: Thermal Environmental Conditions for Human Occupancy is an American National Standard published by ASHRAE that establishes the ranges of indoor environmental conditions to achieve acceptable thermal comfort for occupants of buildings. It was first published in 1966, and since 2004 has been updated every three to six years. The most recent version of the standard was published in 2023.
Cooling load is the rate at which sensible and latent heat must be removed from the space to maintain a constant space dry-bulb air temperature and humidity. Sensible heat into the space causes its air temperature to rise while latent heat is associated with the rise of the moisture content in the space. The building design, internal equipment, occupants, and outdoor weather conditions may affect the cooling load in a building using different heat transfer mechanisms. The SI units are watts.