This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these messages)
|
A ball-pen probe [1] is a modified Langmuir probe used to measure the plasma potential [2] in magnetized plasmas. The ball-pen probe balances the electron and ion saturation currents, so that its floating potential is equal to the plasma potential. Because electrons have a much smaller gyroradius than ions, a moving ceramic shield can be used to screen off an adjustable part of the electron current from the probe collector.
Ball-pen probes are used in plasma physics, notably in tokamaks such as CASTOR, (Czech Academy of Sciences Torus) [1] [2] [3] ASDEX Upgrade, [4] [5] [6] [7] [8] [9] [10] COMPASS, [6] [7] [11] [12] [13] [14] [10] [15] [16] [17] [1] ISTTOK, [10] [18] MAST, [19] [20] TJ-K, [21] [22] RFX, [23] H-1 Heliac, [24] [25] IR-T1, [26] GOLEM [27] as well as low temperature devices as DC cylindrical magnetron in Prague [21] [28] [29] [30] [31] and linear magnetized plasma devices in Nancy [32] [33] and Ljubljana. [21] [28] [34] ‹The template Excessive citations inline is being considered for deletion.› [ excessive citations ]
If a Langmuir probe (electrode) is inserted into a plasma, its potential is not equal to the plasma potential because a Debye sheath forms, but instead to a floating potential . The difference with the plasma potential is given by the electron temperature :
where the coefficient is given by the ratio of the electron and ion saturation current density ( and ) and collecting areas for electrons and ions ( and ):
The ball-pen probe modifies the collecting areas for electrons and ions in such a way that the ratio is equal to one. Consequently, and the floating potential of the ball-pen probe becomes equal to the plasma potential regardless of the electron temperature:
A ball-pen probe consists of a conically shaped collector (non-magnetic stainless steel, tungsten, copper, molybdenum), which is shielded by an insulating tube (boron nitride, Alumina). The collector is fully shielded and the whole probe head is placed perpendicular to magnetic field lines.
When the collector slides within the shield, the ratio varies, and can be set to 1. The adequate retraction length strongly depends on the magnetic field's value. The collector retraction should be roughly below the ion's Larmor radius.[ citation needed ] Calibrating the proper position of the collector can be done in two different ways:
Using two measurements of the plasma potential with probes whose coefficient differ, it is possible to retrieve the electron temperature passively (without any input voltage or current). Using a Langmuir probe (with a non-negligible) and a ball-point probe (whose associated is close to zero) the electron temperature is given by:
where is measured by the ball-pen probe, by the standard Langmuir probe, and is given by the Langmuir probe geometry, plasma gas composition, the magnetic field, and other minor factors (secondary electron emission, sheath expansion, etc.). It can be calculated theoretically, its value being about 3 for a non-magnetized hydrogen plasma. [36] [37]
In practice, the ratio for the ball-pen probe is not exactly equal to one, [5] so that the coefficient must be corrected by an empirical value for :
where
In plasma physics, plasma stability concerns the stability properties of a plasma in equilibrium and its behavior under small perturbations. The stability of the system determines if the perturbations will grow, oscillate, or be damped out. It is an important consideration in topics such as nuclear fusion and astrophysical plasma.
A Langmuir probe is a device used to determine the electron temperature, electron density, and electric potential of a plasma. It works by inserting one or more electrodes into a plasma, with a constant or time-varying electric potential between the various electrodes or between them and the surrounding vessel. The measured currents and potentials in this system allow the determination of the physical properties of the plasma.
Plasma diagnostics are a pool of methods, instruments, and experimental techniques used to measure properties of a plasma, such as plasma components' density, distribution function over energy (temperature), their spatial profiles and dynamics, which enable to derive plasma parameters.
The Levitated Dipole Experiment (LDX) was an experiment investigating the generation of fusion power using the concept of a levitated dipole. The device was the first of its kind to test the levitated dipole concept and was funded by the US Department of Energy. The machine was also part of a collaboration between the MIT Plasma Science and Fusion Center and Columbia University, where another (non-levitated) dipole experiment, the Collisionless Terrella Experiment (CTX), was located.
A dusty plasma is a plasma containing micrometer (10−6) to nanometer (10−9) sized particles suspended in it. Dust particles are charged and the plasma and particles behave as a plasma. Dust particles may form larger particles resulting in "grain plasmas". Due to the additional complexity of studying plasmas with charged dust particles, dusty plasmas are also known as complex plasmas.
The Enormous Toroidal Plasma Device (ETPD) is an experimental physics device housed at the Basic Plasma Science Facility at University of California, Los Angeles (UCLA). It previously operated as the Electric Tokamak (ET) between 1999 and 2006 and was noted for being the world's largest tokamak before being decommissioned due to the lack of support and funding. The machine was renamed to ETPD in 2009. At present, the machine is undergoing upgrades to be re-purposed into a general laboratory for experimental plasma physics research.
ASDEX Upgrade is a divertor tokamak at the Max-Planck-Institut für Plasmaphysik, Garching that went into operation in 1991. At present, it is Germany's second largest fusion experiment after stellarator Wendelstein 7-X.
The tokamak à configuration variable is an experimental tokamak located at the École Polytechnique Fédérale de Lausanne (EPFL) Swiss Plasma Center (SPC) in Lausanne, Switzerland. As the largest experimental facility of the Swiss Plasma Center, the TCV tokamak explores the physics of magnetic confinement fusion. It distinguishes itself from other tokamaks with its specialized plasma shaping capability, which can produce diverse plasma shapes without requiring hardware modifications.
The polywell is a proposed design for a fusion reactor using an electric and magnetic field to heat ions to fusion conditions.
Satya Prakash is an Indian plasma physicist and a former senior professor at the Physical Research Laboratory. He is known for his studies on Langmuir probes and other contributions in space and plasma sciences. A protégé of Vikram Sarabhai, Satya Prakash is an elected fellow of all the three major Indian science academies such as Indian Academy of Sciences, Indian National Science Academy and National Academy of Sciences, India as well as the Gujarat Science Academy and is a recipient of the Hari Om Ashram Prerit Senior Scientist Award. The Government of India honored him with Padma Shri, the fourth highest Indian civilian award for his contributions to the discipline of Physics, in 1982.
Plasma is one of four fundamental states of matter characterized by the presence of a significant portion of charged particles in any combination of ions or electrons. It is the most abundant form of ordinary matter in the universe, mostly in stars, but also dominating the rarefied intracluster medium and intergalactic medium. Plasma can be artificially generated, for example, by heating a neutral gas or subjecting it to a strong electromagnetic field.
The GLAss Spherical Tokamak is a name given to a set of small spherical tokamaks located in Islamabad, Pakistan. They were developed by the Pakistan Atomic Energy Commission (PAEC) as part of the National Tokamak Fusion Program (NTFP) in 2008 and are primarily used for teaching and training purposes.
COMPASS, short for Compact Assembly, is a compact tokamak fusion energy device originally completed at the Culham Science Centre in 1989, upgraded in 1992, and operated until 2002. It was designed as a flexible research facility dedicated mostly to plasma physics studies in circular and D-shaped plasmas.
The Hybrid Illinois Device for Research and Applications (HIDRA) is a medium-sized toroidal magnetic fusion device housed in the Nuclear Radiation Laboratory and operated by the Center for Plasma-Material Interactions (CPMI) within the Department of Nuclear, Plasma and Radiological Engineering at the University of Illinois at Urbana–Champaign, United States. HIDRA had its first plasma at the end of April 2016 and started experimental campaigns by December of that year. HIDRA is the former WEGA classical stellarator that was operated at the Max Planck Institute for Plasma Physics in Greifswald Germany from 2001 to 2013.
In plasma physics and magnetic confinement fusion, the high-confinement mode (H-mode) is a phenomenon and operating regime of enhanced confinement in toroidal plasma such as tokamaks. When the applied heating power is raised above some threshold, the plasma transitions from the low-confinement mode (L-mode) to the H-mode where the energy confinement time approximately doubles in magnitude. The H-mode was discovered by Friedrich Wagner and team in 1982 during neutral-beam heating experiments on ASDEX. It has since been reproduced in all major toroidal confinement devices, and is foreseen to be the standard operational scenario of ITER.
Jose A. Boedo is a Spanish plasma physicist and a researcher at University of California, San Diego. He was elected as a fellow of the American Physical Society in 2016 for "his ground-breaking contributions to the studies of plasma drifts and intermittent plasma transport in the peripheral region of tokamaks".
Hartmut Zohm is a German plasma physicist who is known for his work on the ASDEX Upgrade machine. He received the 2014 John Dawson Award and the 2016 Hannes Alfvén Prize for successfully demonstrating that neoclassical tearing modes in tokamaks can be stabilized by electron cyclotron resonance heating, which is an important design consideration for pushing the performance limit of the ITER.
The Compact Toroidal Hybrid (CTH) is an experimental device at Auburn University that uses magnetic fields to confine high-temperature plasmas. CTH is a torsatron type of stellarator with an external, continuously wound helical coil that generates the bulk of the magnetic field for containing a plasma.
Noah Hershkowitz was an American experimental plasma physicist. He was known for his pioneering research on the understanding of plasma sheaths, solitons and double layers in plasmas, as well as the development of the emissive probe which measures the plasma potential.
Keith Howard Burrell is an American plasma physicist.