This article includes a list of general references, but it lacks sufficient corresponding inline citations .(May 2021) |
In computer science, bare machine (or bare metal computer) refers to a computer which has no operating system. [1] The software executed by a bare machine, commonly called a "bare metal program" or "bare metal application", [2] is designed to interact directly with hardware. Bare machines are widely used in embedded systems, particularly in cases where resources are limited or high performance is required. [3]
Typically, a bare-metal application will run faster, use less memory and be more power efficient than an equivalent program that relies on an operating system, due to the inherent overhead imposed by system calls. For example, hardware inputs and outputs are directly accessible to bare metal software, whereas they must be accessed through system calls when using an OS. [4]
Bare metal applications typically require more effort to develop because operating system services such as memory management and task scheduling are not available.
Debugging a bare-metal program may be complicated by factors such as:
Bare-metal programming is generally done using a close-to-hardware language such as Rust, C++, C, or assembly language. [5]
Early computers, such as the PDP-11, allowed programmers to load a program, supplied in machine code, to RAM. The resulting operation of the program could be monitored by lights, and output derived from magnetic tape, print devices, or storage.
Bare machine programming is a common practice in embedded systems, in which microcontrollers or microprocessors boot directly into monolithic, single-purpose software without loading an operating system. Such embedded software can vary in structure. For example, one such program paradigm, known as "foreground-background" or "superloop" architecture, consists of an infinite main loop in which each task is executed sequentially. [6]
An operating system (OS) is system software that manages computer hardware and software resources, and provides common services for computer programs.
Real-time computing (RTC) is the computer science term for hardware and software systems subject to a "real-time constraint", for example from event to system response. Real-time programs must guarantee response within specified time constraints, often referred to as "deadlines".
In computing, a virtual machine (VM) is the virtualization or emulation of a computer system. Virtual machines are based on computer architectures and provide the functionality of a physical computer. Their implementations may involve specialized hardware, software, or a combination of the two. Virtual machines differ and are organized by their function, shown here:
Computerized batch processing is a method of running software programs called jobs in batches automatically. While users are required to submit the jobs, no other interaction by the user is required to process the batch. Batches may automatically be run at scheduled times as well as being run contingent on the availability of computer resources.
An embedded system is a specialized computer system—a combination of a computer processor, computer memory, and input/output peripheral devices—that has a dedicated function within a larger mechanical or electronic system. It is embedded as part of a complete device often including electrical or electronic hardware and mechanical parts. Because an embedded system typically controls physical operations of the machine that it is embedded within, it often has real-time computing constraints. Embedded systems control many devices in common use. In 2009, it was estimated that ninety-eight percent of all microprocessors manufactured were used in embedded systems.
In computer science, an instruction set architecture (ISA) is an abstract model that generally defines how software controls the CPU in a computer or a family of computers. A device or program that executes instructions described by that ISA, such as a central processing unit (CPU), is called an implementation of that ISA.
Computer operating systems (OSes) provide a set of functions needed and used by most application programs on a computer, and the links needed to control and synchronize computer hardware. On the first computers, with no operating system, every program needed the full hardware specification to run correctly and perform standard tasks, and its own drivers for peripheral devices like printers and punched paper card readers. The growing complexity of hardware and application programs eventually made operating systems a necessity for everyday use.
In computer software, an application binary interface (ABI) is an interface between two binary program modules. Often, one of these modules is a library or operating system facility, and the other is a program that is being run by a user.
RT-11 is a discontinued small, low-end, single-user real-time operating system for the full line of Digital Equipment Corporation PDP-11 16-bit computers. RT-11 was first implemented in 1970. It was widely used for real-time computing systems, process control, and data acquisition across all PDP-11s. It was also used for low-cost general-use computing.
A computing platform, digital platform, or software platform is the infrastructure on which software is executed. While the individual components of a computing platform may be obfuscated under layers of abstraction, the summation of the required components comprise the computing platform.
A cross compiler is a compiler capable of creating executable code for a platform other than the one on which the compiler is running. For example, a compiler that runs on a PC but generates code that runs on Android devices is a cross compiler.
Execution in computer and software engineering is the process by which a computer or virtual machine interprets and acts on the instructions of a computer program. Each instruction of a program is a description of a particular action which must be carried out, in order for a specific problem to be solved. Execution involves repeatedly following a "fetch–decode–execute" cycle for each instruction done by the control unit. As the executing machine follows the instructions, specific effects are produced in accordance with the semantics of those instructions.
Embedded software is computer software, written to control machines or devices that are not typically thought of as computers, commonly known as embedded systems. It is typically specialized for the particular hardware that it runs on and has time and memory constraints. This term is sometimes used interchangeably with firmware.
A hypervisor, also known as a virtual machine monitor (VMM) or virtualizer, is a type of computer software, firmware or hardware that creates and runs virtual machines. A computer on which a hypervisor runs one or more virtual machines is called a host machine, and each virtual machine is called a guest machine. The hypervisor presents the guest operating systems with a virtual operating platform and manages the execution of the guest operating systems. Unlike an emulator, the guest executes most instructions on the native hardware. Multiple instances of a variety of operating systems may share the virtualized hardware resources: for example, Linux, Windows, and macOS instances can all run on a single physical x86 machine. This contrasts with operating-system–level virtualization, where all instances must share a single kernel, though the guest operating systems can differ in user space, such as different Linux distributions with the same kernel.
In computer engineering and electrical engineering, bit banging or bit bashing is a term of art for any method of data transmission that employs software as a substitute for dedicated hardware to generate transmitted or process received signals. Such software directly sets and samples the states of GPIOs to transmit and receive, respectively, and is responsible for meeting all timing requirements and protocol sequencing of the signals. In contrast to bit banging, dedicated hardware satisfies these requirements. If necessary, it also provides a data buffer to relax software timing. Bit banging can be implemented at very low cost, and is commonly used in embedded systems.
In computer architecture, a transport triggered architecture (TTA) is a kind of processor design in which programs directly control the internal transport buses of a processor. Computation happens as a side effect of data transports: writing data into a triggering port of a functional unit triggers the functional unit to start a computation. This is similar to what happens in a systolic array. Due to its modular structure, TTA is an ideal processor template for application-specific instruction set processors (ASIP) with customized datapath but without the inflexibility and design cost of fixed function hardware accelerators.
A computer appliance is a computer system with a combination of hardware, software, or firmware that is specifically designed to provide a particular computing resource. Such devices became known as appliances because of the similarity in role or management to a home appliance, which are generally closed and sealed, and are not serviceable by the user or owner. The hardware and software are delivered as an integrated product and may even be pre-configured before delivery to a customer, to provide a turn-key solution for a particular application. Unlike general purpose computers, appliances are generally not designed to allow the customers to change the software and the underlying operating system, or to flexibly reconfigure the hardware.
A kernel is a computer program at the core of a computer's operating system that always has complete control over everything in the system. The kernel is also responsible for preventing and mitigating conflicts between different processes. It is the portion of the operating system code that is always resident in memory and facilitates interactions between hardware and software components. A full kernel controls all hardware resources via device drivers, arbitrates conflicts between processes concerning such resources, and optimizes the utilization of common resources e.g. CPU & cache usage, file systems, and network sockets. On most systems, the kernel is one of the first programs loaded on startup. It handles the rest of startup as well as memory, peripherals, and input/output (I/O) requests from software, translating them into data-processing instructions for the central processing unit.
Superloop may refer to:
Bare Machine Computing (BMC) is a computer architecture based on bare machines. In the BMC paradigm, applications run without the support of any operating system (OS) or centralized kernel i.e., no intermediary software is loaded on the bare machine prior to running applications. The applications, which are called bare machine applications or simply BMC applications, do not use any persistent storage or a hard disk, and instead are stored on detachable mass storage such as a USB flash drive. A BMC program consists of a single application or a small set of applications that runs as a single executable within one address space. BMC applications have direct access to the necessary hardware resources. They are self-contained, self-managed and self-controlled entities that boot, load and run without using any other software components or external software. BMC applications have inherent security due to their design. There are no OS-related vulnerabilities, and each application only contains the necessary (minimal) functionality. There is no privileged mode in a BMC system since applications only run in user mode. Also, application code is statically compiled-there is no means to dynamically alter BMC program flow during execution.