Barycentric and geocentric celestial reference systems

Last updated

The barycentric celestial reference system (BCRS) is a coordinate system used in astrometry to specify the location and motions of astronomical objects. It was created in 2000 by the International Astronomical Union (IAU) to be the global standard reference system for objects located outside the gravitational vicinity of Earth: [1] planets, moons, and other Solar System bodies, stars and other objects in the Milky Way galaxy, and extra-galactic objects.

Contents

The geocentric celestial reference system (GCRS), also created by the IAU in 2000, is a similar standard coordinate system used to specify the location and motions of near-Earth objects, such as satellites. [1]

These systems make it easier for scientists and engineers to compile, share, compare, and convert accurate measurements worldwide, by establishing standards both of measure and of methodology, and providing a consistent framework of operations. The focus of the BCRS is on astronomy: exploration of the Solar System and the universe. The BCRS is the system currently used for expressing positional data in astronomical references, such as the Hipparcos star catalog.

The focus of the GCRS is somewhat more on the navigation of Earth satellites and the geophysical applications they support. The proper functioning of the Global Positioning System (GPS) is directly dependent upon the accuracy of satellite measurements as supported by the GCRS. [2]

Purpose and implementation

The BCRS was designed to support the extremely-high-precision measurements of position and motion required in astrometry. [1] One critical factor in achieving that precision lies in how general relativistic effects are determined and measured. Both systems incorporate standards that enable the consistency and ready comparability of the resulting spacetime coordinates among astrometric measurements taken worldwide. They provide a metric tensor to establish a consistent frame of reference for observations. The tensor achieves consistency in part through its standardization of the reference point for gravity.

The geocentric system is simpler, being smaller and involving few massive objects: that coordinate system defines its center as the center of mass of the Earth itself. The barycentric system can be loosely thought of as being centered on the Sun, but the Solar System is more complicated. Even the much smaller planets exert gravitational force upon the Sun, causing it to shift position slightly as they orbit. Those shifts are very large in comparison to the measurement precisions that are required for astrometry. Thus, the BCRS defines its center of coordinates as the center of mass of the entire Solar System, its barycenter. This stable point for gravity helps to minimize relativistic effects from any observational frames of reference within the Solar System.

Relationship to other standards

ICRS

The orientation of the BCRS coordinate system coincides with that of the International Celestial Reference System (ICRS). Both are centered at the barycenter of the Solar System, and both "point" in the same direction. That is, their axes are aligned with that of the International Celestial Reference Frame (ICRF), which was adopted as a standard by the IAU two years earlier (1998). The motivation of the ICRF is to define what "direction" means in space, by fixing its orientation in relation to the Celestial sphere, that is, to deep-space background. Speaking casually, it does not move in relation to the stars and galaxies; it does not rotate.

Determining perfect immobilization of direction is not possible in practice, but we can get much closer than it is even possible for us to measure. The more distant an object is, the less its direction appears to move in relation to us (the parallax effect). The ICRF thus uses very distant objects, well outside our galaxy, to establish its directional points of reference. The chosen objects also emit radio wavelengths, which are less subject than other wavelengths to being obscured by celestial gas in front of them. The ICRF adopts coordinates for 212 defining objects, mostly quasars, fixing its orientation with respect to them.

HCRF

The Hipparcos Celestial Reference Frame (HCRF) was similar to ICRF, but earlier, used in association with the Hipparcos satellite, which functioned between 1989 and 1993. That satellite took copious stellar parallax measurements at accuracies exceeding anything otherwise available at the time, thus producing a catalog of stars still in wide use today. No such extensive mapping has yet been completed based upon subsequent improvements in measurement capability. With lower precision then, and at optical wavelengths, the ICRS and BCRS can also be specified using the HCRF. That is the means by which BCRS can be used in relation to the Hipparcos star catalog.

Conversion of coordinates

The BCRS and GCRS were also designed so as to make transformations of their coordinates between themselves and other reference systems possible, though the conversions are not by any means straightforward. There are two software libraries of IAU-sanctioned algorithms for manipulating and transforming among the BCRS and other reference systems: the Standards of Fundamental Astronomy (SOFA) system and the Naval Observatory Vector Astrometry Subroutines (NOVAS). [1]

The orientation of the BCRS/ICRS axes also align within 0.02 arcsecond of the Earth's mean equator and equinox for the Fifth Fundamental Catalog (FK5) J2000.0 epoch.

See also

Related Research Articles

<span class="mw-page-title-main">Astrometry</span> Branch of astronomy involving positioning and movements of celestial bodies

Astrometry is a branch of astronomy that involves precise measurements of the positions and movements of stars and other celestial bodies. It provides the kinematics and physical origin of the Solar System and this galaxy, the Milky Way.

A time standard is a specification for measuring time: either the rate at which time passes or points in time or both. In modern times, several time specifications have been officially recognized as standards, where formerly they were matters of custom and practice. An example of a kind of time standard can be a time scale, specifying a method for measuring divisions of time. A standard for civil time can specify both time intervals and time-of-day.

<span class="mw-page-title-main">Astronomical coordinate systems</span> System for specifying positions of celestial objects

In astronomy, coordinate systems are used for specifying positions of celestial objects relative to a given reference frame, based on physical reference points available to a situated observer. Coordinate systems in astronomy can specify an object's position in three-dimensional space or plot merely its direction on a celestial sphere, if the object's distance is unknown or trivial.

<span class="mw-page-title-main">Equatorial coordinate system</span> Celestial coordinate system used to specify the positions of celestial objects

The equatorial coordinate system is a celestial coordinate system widely used to specify the positions of celestial objects. It may be implemented in spherical or rectangular coordinates, both defined by an origin at the centre of Earth, a fundamental plane consisting of the projection of Earth's equator onto the celestial sphere, a primary direction towards the March equinox, and a right-handed convention.

<span class="mw-page-title-main">Ecliptic coordinate system</span> Celestial coordinate system used to describe Solar System objects

In astronomy, the ecliptic coordinate system is a celestial coordinate system commonly used for representing the apparent positions, orbits, and pole orientations of Solar System objects. Because most planets and many small Solar System bodies have orbits with only slight inclinations to the ecliptic, using it as the fundamental plane is convenient. The system's origin can be the center of either the Sun or Earth, its primary direction is towards the March equinox, and it has a right-hand convention. It may be implemented in spherical or rectangular coordinates.

<span class="mw-page-title-main">International Earth Rotation and Reference Systems Service</span> Body responsible for maintaining global time and reference frame standards

The International Earth Rotation and Reference Systems Service (IERS), formerly the International Earth Rotation Service, is the body responsible for maintaining global time and reference frame standards, notably through its Earth Orientation Parameter (EOP) and International Celestial Reference System (ICRS) groups.

In astronomy, an epoch or reference epoch is a moment in time used as a reference point for some time-varying astronomical quantity. It is useful for the celestial coordinates or orbital elements of a celestial body, as they are subject to perturbations and vary with time. These time-varying astronomical quantities might include, for example, the mean longitude or mean anomaly of a body, the node of its orbit relative to a reference plane, the direction of the apogee or aphelion of its orbit, or the size of the major axis of its orbit.

<i>Hipparcos</i> European Space Agency scientific satellite

Hipparcos was a scientific satellite of the European Space Agency (ESA), launched in 1989 and operated until 1993. It was the first space experiment devoted to precision astrometry, the accurate measurement of the positions of celestial objects on the sky. This permitted the first high-precision measurements of the intrinsic brightnesses, proper motions, and parallaxes of stars, enabling better calculations of their distance and tangential velocity. When combined with radial velocity measurements from spectroscopy, astrophysicists were able to finally measure all six quantities needed to determine the motion of stars. The resulting Hipparcos Catalogue, a high-precision catalogue of more than 118,200 stars, was published in 1997. The lower-precision Tycho Catalogue of more than a million stars was published at the same time, while the enhanced Tycho-2 Catalogue of 2.5 million stars was published in 2000. Hipparcos' follow-up mission, Gaia, was launched in 2013.

<span class="mw-page-title-main">Very-long-baseline interferometry</span> Comparing widely separated telescope wavefronts

Very-long-baseline interferometry (VLBI) is a type of astronomical interferometry used in radio astronomy. In VLBI a signal from an astronomical radio source, such as a quasar, is collected at multiple radio telescopes on Earth or in space. The distance between the radio telescopes is then calculated using the time difference between the arrivals of the radio signal at different telescopes. This allows observations of an object that are made simultaneously by many radio telescopes to be combined, emulating a telescope with a size equal to the maximum separation between the telescopes.

Barycentric Dynamical Time is a relativistic coordinate time scale, intended for astronomical use as a time standard to take account of time dilation when calculating orbits and astronomical ephemerides of planets, asteroids, comets and interplanetary spacecraft in the Solar System. TDB is now defined as a linear scaling of Barycentric Coordinate Time (TCB). A feature that distinguishes TDB from TCB is that TDB, when observed from the Earth's surface, has a difference from Terrestrial Time (TT) that is about as small as can be practically arranged with consistent definition: the differences are mainly periodic, and overall will remain at less than 2 milliseconds for several millennia.

Barycentric Coordinate Time is a coordinate time standard intended to be used as the independent variable of time for all calculations pertaining to orbits of planets, asteroids, comets, and interplanetary spacecraft in the Solar System. It is equivalent to the proper time experienced by a clock at rest in a coordinate frame co-moving with the barycenter of the Solar System : that is, a clock that performs exactly the same movements as the Solar System but is outside the system's gravity well. It is therefore not influenced by the gravitational time dilation caused by the Sun and the rest of the system. TCB is the time coordinate for the Barycentric Celestial Reference System (BCRS).

Geocentric Coordinate Time is a coordinate time standard intended to be used as the independent variable of time for all calculations pertaining to precession, nutation, the Moon, and artificial satellites of the Earth. It is equivalent to the proper time experienced by a clock at rest in a coordinate frame co-moving with the center of the Earth : that is, a clock that performs exactly the same movements as the Earth but is outside the Earth's gravity well. It is therefore not influenced by the gravitational time dilation caused by the Earth. The TCG is the time coordinate for the Geocentric Celestial Reference System (GCRS).

The astronomical system of units, formerly called the IAU (1976) System of Astronomical Constants, is a system of measurement developed for use in astronomy. It was adopted by the International Astronomical Union (IAU) in 1976 via Resolution No. 1, and has been significantly updated in 1994 and 2009.

The International Celestial Reference System (ICRS) is the current standard celestial reference system adopted by the International Astronomical Union (IAU). Its origin is at the barycenter of the Solar System, with axes that are intended to "show no global rotation with respect to a set of distant extragalactic objects". This fixed reference system differs from previous reference systems, which had been based on Catalogues of Fundamental Stars that had published the positions of stars based on direct "observations of [their] equatorial coordinates, right ascension and declination" and had adopted as "privileged axes ... the mean equator and the dynamical equinox" at a particular date and time.

<span class="mw-page-title-main">Theoretical astronomy</span> Applied and interdisciplinary physics

Theoretical astronomy is the use of analytical and computational models based on principles from physics and chemistry to describe and explain astronomical objects and astronomical phenomena. Theorists in astronomy endeavor to create theoretical models and from the results predict observational consequences of those models. The observation of a phenomenon predicted by a model allows astronomers to select between several alternate or conflicting models as the one best able to describe the phenomena.

The Catalogue of Fundamental Stars is a series of six astrometric catalogues of high precision positional data for a small selection of stars to define a celestial reference frame, which is a standard coordinate system for measuring positions of stars.

In the theory of relativity, it is convenient to express results in terms of a spacetime coordinate system relative to an implied observer. In many coordinate systems, an event is specified by one time coordinate and three spatial coordinates. The time specified by the time coordinate is referred to as coordinate time to distinguish it from proper time.

<span class="mw-page-title-main">Dynamical time scale</span> Time standard

In time standards, dynamical time is the independent variable of the equations of celestial mechanics. This is in contrast to time scales such as mean solar time which are based on how far the earth has turned. Since Earth's rotation is not constant, using a time scale based on it for calculating the positions of heavenly objects gives errors. Dynamical time can be inferred from the observed position of an astronomical object via a theory of its motion. A first application of this concept of dynamical time was the definition of the ephemeris time scale (ET).

The poles of astronomical bodies are determined based on their axis of rotation in relation to the celestial poles of the celestial sphere. Astronomical bodies include stars, planets, dwarf planets and small Solar System bodies such as comets and minor planets, as well as natural satellites and minor-planet moons.

In astronomy, an equinox is either of two places on the celestial sphere at which the ecliptic intersects the celestial equator. Although there are two such intersections, the equinox associated with the Sun's ascending node is used as the conventional origin of celestial coordinate systems and referred to simply as "the equinox". In contrast to the common usage of spring/vernal and autumnal equinoxes, the celestial coordinate system equinox is a direction in space rather than a moment in time.

References

  1. 1 2 3 4 Kaplan, George H. (20 Oct 2005), "The IAU Resolutions on Astronomical Reference Systems, Time Scales, and Earth Rotation Models", USNO Circular, vol. 179, Washington, DC: United States Naval Observatory, arXiv: astro-ph/0602086
  2. Filippenko, Alex (2007), "Lecture 58", Understanding the Universe: An Introduction to Astronomy (DVD), The Great Courses (2nd ed.), Chantilly, VA, USA: The Teaching Company

Further reading