Bayesian model of computational anatomy

Last updated

Computational anatomy (CA) is a discipline within medical imaging focusing on the study of anatomical shape and form at the visible or gross anatomical scale of morphology. The field is broadly defined and includes foundations in anatomy, applied mathematics and pure mathematics, including medical imaging, neuroscience, physics, probability, and statistics. It focuses on the anatomical structures being imaged, rather than the medical imaging devices. The central focus of the sub-field of computational anatomy within medical imaging is mapping information across anatomical coordinate systems most often dense information measured within a magnetic resonance image (MRI). The introduction of flows into CA, which are akin to the equations of motion used in fluid dynamics, exploit the notion that dense coordinates in image analysis follow the Lagrangian and Eulerian equations of motion. In models based on Lagrangian and Eulerian flows of diffeomorphisms, the constraint is associated to topological properties, such as open sets being preserved, coordinates not crossing implying uniqueness and existence of the inverse mapping, and connected sets remaining connected. The use of diffeomorphic methods grew quickly to dominate the field of mapping methods post Christensen's [1] original paper, with fast and symmetric methods becoming available. [2] [3]

Contents

The main statistical model

Source-channel model showing the source of images the deformable template
I
[?]
ph
[?]
I
t
e
m
p
[?]
I
{\displaystyle I\doteq \varphi \cdot I_{\mathrm {temp} }\in {\mathcal {I}}}
and channel output associated with MRI sensor
I
D
[?]
I
D
{\displaystyle I^{D}\in {\mathcal {I}}^{\mathcal {D}}} Source-channel-model-Shannon.png
Source-channel model showing the source of images the deformable template and channel output associated with MRI sensor

The central statistical model of Computational Anatomy in the context of medical imaging has been the source-channel model of Shannon theory; the source is the deformable template of images , the channel outputs are the imaging sensors with observables (see Figure). The importance of the source-channel model is that the variation in the anatomical configuration are modelled separated from the sensor variations of the Medical imagery. The Bayes theory dictates that the model is characterized by the prior on the source, on , and the conditional density on the observable

conditioned on .

In deformable template theory, the images are linked to the templates, with the deformations a group which acts on the template; see group action in computational anatomy For image action , then the prior on the group induces the prior on images , written as densities the log-posterior takes the form

The random orbit model which follows specifies how to generate the group elements and therefore the random spray of objects which form the prior distribution.

The random orbit model of computational anatomy

Orbits of brains associated to diffeomorphic group action on templates depicted via smooth flow associated to geodesic flows with random spray associated to random generation of initial tangent space vector field
v
0
[?]
V
{\displaystyle v_{0}\in V}
; published in. Showing orbit as a surface.jpg
Orbits of brains associated to diffeomorphic group action on templates depicted via smooth flow associated to geodesic flows with random spray associated to random generation of initial tangent space vector field ; published in.

The random orbit model of Computational Anatomy first appeared in [4] [5] [6] modelling the change in coordinates associated to the randomness of the group acting on the templates, which induces the randomness on the source of images in the anatomical orbit of shapes and forms and resulting observations through the medical imaging devices. Such a random orbit model in which randomness on the group induces randomness on the images was examined for the Special Euclidean Group for object recognition in which the group element was the special Euclidean group in. [7]

For the study of deformable shape in CA, the high-dimensional diffeomorphism groups used in computational anatomy are generated via smooth flows which satisfy the Lagrangian and Eulerian specification of the flow fields satisfying the ordinary differential equation:

Showing the Lagrangian flow of coordinates
x
[?]
X
{\displaystyle x\in X}
with associated vector fields
v
t
,
t
[?]
[
0
,
1
]
{\displaystyle v_{t},t\in [0,1]}
satisfying ordinary differential equation
ph
.
t
=
v
t
(
ph
t
)
,
ph
0
=
i
d
{\displaystyle {\dot {\varphi }}_{t}=v_{t}(\varphi _{t}),\varphi _{0}=id}
. Lagrangian flow.png
Showing the Lagrangian flow of coordinates with associated vector fields satisfying ordinary differential equation .

with the vector fields on termed the Eulerian velocity of the particles at position of the flow. The vector fields are functions in a function space, modelled as a smooth Hilbert space with the vector fields having 1-continuous derivative . For , the inverse of the flow is given by

and the Jacobian matrix for flows in given as

To ensure smooth flows of diffeomorphisms with inverse, the vector fields must be at least 1-time continuously differentiable in space [8] [9] which are modelled as elements of the Hilbert space using the Sobolev embedding theorems so that each element has 3-square-integrable derivatives. Thus embed smoothly in 1-time continuously differentiable functions. [8] [9] The diffeomorphism group are flows with vector fields absolutely integrable in Sobolev norm:

where with a linear operator defining the norm of the RKHS. The integral is calculated by integration by parts when is a generalized function in the dual space .

Riemannian exponential

In the random orbit model of computational anatomy, the entire flow is reduced to the initial condition which forms the coordinates encoding the diffeomorphism. From the initial condition then geodesic positioning with respect to the Riemannian metric of Computational anatomy solves for the flow of the Euler-Lagrange equation. Solving the geodesic from the initial condition is termed the Riemannian-exponential, a mapping at identity to the group.

The Riemannian exponential satisfies for initial condition , vector field dynamics ,

It is extended to the entire group, Depicted in the accompanying figure is a depiction of the random orbits around each exemplar, , generated by randomizing the flow by generating the initial tangent space vector field at the identity , and then generating random object .

Figure showing the random spray of synthesized subcortical structures laid out in the two-dimensional grid representing the variance of the eigenfunction used for the momentum for synthesis. Synthesized cortical structures from common template.png
Figure showing the random spray of synthesized subcortical structures laid out in the two-dimensional grid representing the variance of the eigenfunction used for the momentum for synthesis.

Shown in the Figure on the right the cartoon orbit, are a random spray of the subcortical manifolds generated by randomizing the vector fields supported over the submanifolds. The random orbit model induces the prior on shapes and images conditioned on a particular atlas . For this the generative model generates the mean field as a random change in coordinates of the template according to , where the diffeomorphic change in coordinates is generated randomly via the geodesic flows.

MAP estimation in the multiple-atlas orbit model

The random orbit model induces the prior on shapes and images conditioned on a particular atlas . For this the generative model generates the mean field as a random change in coordinates of the template according to , where the diffeomorphic change in coordinates is generated randomly via the geodesic flows. The prior on random transformations on is induced by the flow , with constructed as a Gaussian random field prior . The density on the random observables at the output of the sensor are given by

Maximum a posteriori estimation (MAP) estimation is central to modern statistical theory. Parameters of interest take many forms including (i) disease type such as neurodegenerative or neurodevelopmental diseases, (ii) structure type such as cortical or subcortical structures in problems associated to segmentation of images, and (iii) template reconstruction from populations. Given the observed image , MAP estimation maximizes the posterior:

This requires computation of the conditional probabilities . The multiple atlas orbit model randomizes over the denumerable set of atlases . The model on images in the orbit take the form of a multi-modal mixture distribution

The conditional Gaussian model has been examined heavily for inexact matching in dense images and for landmark matching.

Dense emage matching

Model as a conditionally Gaussian random field conditioned, mean field, . For uniform variance the endpoint error terms plays the role of the log-conditional (only a function of the mean field) giving the endpoint term:

Landmark matching

Model as conditionally Gaussian with mean field , constant noise variance independent of landmarks. The log-conditional (only a function of the mean field) can be viewed as the endpoint term:

MAP segmentation based on multiple atlases

The random orbit model for multiple atlases models the orbit of shapes as the union over multiple anatomical orbits generated from the group action of diffeomorphisms, , with each atlas having a template and predefined segmentation field . incorporating the parcellation into anatomical structures of the coordinate of the MRI.. The pairs are indexed over the voxel lattice with an MRI image and a dense labelling of every voxel coordinate. The anatomical labelling of parcellated structures are manual delineations by neuroanatomists.

The Bayes segmentation problem [10] is given measurement with mean field and parcellation , the anatomical labelling . mustg be estimated for the measured MRI image. The mean-field of the observable image is modelled as a random deformation from one of the templates , which is also randomly selected, ,. The optimal diffeomorphism is hidden and acts on the background space of coordinates of the randomly selected template image . Given a single atlas , the likelihood model for inference is determined by the joint probability ; with multiple atlases, the fusion of the likelihood functions yields the multi-modal mixture model with the prior averaging over models.

The MAP estimator of segmentation is the maximizer given , which involves the mixture over all atlases.

The quantity is computed via a fusion of likelihoods from multiple deformable atlases, with being the prior probability that the observed image evolves from the specific template image .

The MAP segmentation can be iteratively solved via the expectation–maximization algorithm

MAP estimation of volume templates from populations and the EM algorithm

Generating templates empirically from populations is a fundamental operation ubiquitous to the discipline. Several methods based on Bayesian statistics have emerged for submanifolds and dense image volumes. For the dense image volume case, given the observable the problem is to estimate the template in the orbit of dense images . Ma's procedure takes an initial hypertemplate as the starting point, and models the template in the orbit under the unknown to be estimated diffeomorphism , with the parameters to be estimated the log-coordinates determining the geodesic mapping of the hyper-template .

In the Bayesian random orbit model of computational anatomy the observed MRI images are modelled as a conditionally Gaussian random field with mean field , with a random unknown transformation of the template. The MAP estimation problem is to estimate the unknown template given the observed MRI images.

Ma's procedure for dense imagery takes an initial hypertemplate as the starting point, and models the template in the orbit under the unknown to be estimated diffeomorphism . The observables are modelled as conditional random fields, a conditional-Gaussian random field with mean field . The unknown variable to be estimated explicitly by MAP is the mapping of the hyper-template , with the other mappings considered as nuisance or hidden variables which are integrated out via the Bayes procedure. This is accomplished using the expectation–maximization algorithm.

The orbit-model is exploited by associating the unknown to be estimated flows to their log-coordinates via the Riemannian geodesic log and exponential for computational anatomy the initial vector field in the tangent space at the identity so that , with the mapping of the hyper-template. The MAP estimation problem becomes

The EM algorithm takes as complete data the vector-field coordinates parameterizing the mapping, and compute iteratively the conditional-expectation

Related Research Articles

<span class="mw-page-title-main">Navier–Stokes equations</span> Equations describing the motion of viscous fluid substances

The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data. This is achieved by maximizing a likelihood function so that, under the assumed statistical model, the observed data is most probable. The point in the parameter space that maximizes the likelihood function is called the maximum likelihood estimate. The logic of maximum likelihood is both intuitive and flexible, and as such the method has become a dominant means of statistical inference.

<span class="mw-page-title-main">Jensen's inequality</span> Theorem of convex functions

In mathematics, Jensen's inequality, named after the Danish mathematician Johan Jensen, relates the value of a convex function of an integral to the integral of the convex function. It was proved by Jensen in 1906, building on an earlier proof of the same inequality for doubly-differentiable functions by Otto Hölder in 1889. Given its generality, the inequality appears in many forms depending on the context, some of which are presented below. In its simplest form the inequality states that the convex transformation of a mean is less than or equal to the mean applied after convex transformation; it is a simple corollary that the opposite is true of concave transformations.

<span class="mw-page-title-main">Adjoint representation</span> Mathematical term

In mathematics, the adjoint representation of a Lie group G is a way of representing the elements of the group as linear transformations of the group's Lie algebra, considered as a vector space. For example, if G is , the Lie group of real n-by-n invertible matrices, then the adjoint representation is the group homomorphism that sends an invertible n-by-n matrix to an endomorphism of the vector space of all linear transformations of defined by: .

<span class="mw-page-title-main">Theta function</span> Special functions of several complex variables

In mathematics, theta functions are special functions of several complex variables. They show up in many topics, including Abelian varieties, moduli spaces, quadratic forms, and solitons. As Grassmann algebras, they appear in quantum field theory.

In mathematics, the Jacobi elliptic functions are a set of basic elliptic functions. They are found in the description of the motion of a pendulum, as well as in the design of electronic elliptic filters. While trigonometric functions are defined with reference to a circle, the Jacobi elliptic functions are a generalization which refer to other conic sections, the ellipse in particular. The relation to trigonometric functions is contained in the notation, for example, by the matching notation for . The Jacobi elliptic functions are used more often in practical problems than the Weierstrass elliptic functions as they do not require notions of complex analysis to be defined and/or understood. They were introduced by Carl Gustav Jakob Jacobi. Carl Friedrich Gauss had already studied special Jacobi elliptic functions in 1797, the lemniscate elliptic functions in particular, but his work was published much later.

In mathematics, the total variation identifies several slightly different concepts, related to the (local or global) structure of the codomain of a function or a measure. For a real-valued continuous function f, defined on an interval [a, b] ⊂ R, its total variation on the interval of definition is a measure of the one-dimensional arclength of the curve with parametric equation xf(x), for x ∈ [a, b]. Functions whose total variation is finite are called functions of bounded variation.

This is a list of some vector calculus formulae for working with common curvilinear coordinate systems.

In mathematical statistics, the Kullback–Leibler (KL) divergence, denoted , is a type of statistical distance: a measure of how one probability distribution P is different from a second, reference probability distribution Q. A simple interpretation of the KL divergence of P from Q is the expected excess surprise from using Q as a model instead of P when the actual distribution is P. While it is a measure of how different two distributions are, and in some sense is thus a "distance", it is not actually a metric, which is the most familiar and formal type of distance. In particular, it is not symmetric in the two distributions, and does not satisfy the triangle inequality. Instead, in terms of information geometry, it is a type of divergence, a generalization of squared distance, and for certain classes of distributions, it satisfies a generalized Pythagorean theorem.

<span class="mw-page-title-main">Characteristic function (probability theory)</span> Fourier transform of the probability density function

In probability theory and statistics, the characteristic function of any real-valued random variable completely defines its probability distribution. If a random variable admits a probability density function, then the characteristic function is the Fourier transform of the probability density function. Thus it provides an alternative route to analytical results compared with working directly with probability density functions or cumulative distribution functions. There are particularly simple results for the characteristic functions of distributions defined by the weighted sums of random variables.

In mathematics, Weyl's lemma, named after Hermann Weyl, states that every weak solution of Laplace's equation is a smooth solution. This contrasts with the wave equation, for example, which has weak solutions that are not smooth solutions. Weyl's lemma is a special case of elliptic or hypoelliptic regularity.

A ratio distribution is a probability distribution constructed as the distribution of the ratio of random variables having two other known distributions. Given two random variables X and Y, the distribution of the random variable Z that is formed as the ratio Z = X/Y is a ratio distribution.

In mathematics, Laplace's principle is a basic theorem in large deviations theory which is similar to Varadhan's lemma. It gives an asymptotic expression for the Lebesgue integral of exp(−θφ(x)) over a fixed set A as θ becomes large. Such expressions can be used, for example, in statistical mechanics to determining the limiting behaviour of a system as the temperature tends to absolute zero.

A product distribution is a probability distribution constructed as the distribution of the product of random variables having two other known distributions. Given two statistically independent random variables X and Y, the distribution of the random variable Z that is formed as the product is a product distribution.

In statistics, the variance function is a smooth function that depicts the variance of a random quantity as a function of its mean. The variance function is a measure of heteroscedasticity and plays a large role in many settings of statistical modelling. It is a main ingredient in the generalized linear model framework and a tool used in non-parametric regression, semiparametric regression and functional data analysis. In parametric modeling, variance functions take on a parametric form and explicitly describe the relationship between the variance and the mean of a random quantity. In a non-parametric setting, the variance function is assumed to be a smooth function.

Computational anatomy is an interdisciplinary field of biology focused on quantitative investigation and modelling of anatomical shapes variability. It involves the development and application of mathematical, statistical and data-analytical methods for modelling and simulation of biological structures.

Group actions are central to Riemannian geometry and defining orbits. The orbits of computational anatomy consist of anatomical shapes and medical images; the anatomical shapes are submanifolds of differential geometry consisting of points, curves, surfaces and subvolumes,. This generalized the ideas of the more familiar orbits of linear algebra which are linear vector spaces. Medical images are scalar and tensor images from medical imaging. The group actions are used to define models of human shape which accommodate variation. These orbits are deformable templates as originally formulated more abstractly in pattern theory.

Statistical shape analysis and statistical shape theory in computational anatomy (CA) is performed relative to templates, therefore it is a local theory of statistics on shape. Template estimation in computational anatomy from populations of observations is a fundamental operation ubiquitous to the discipline. Several methods for template estimation based on Bayesian probability and statistics in the random orbit model of CA have emerged for submanifolds and dense image volumes.

Computational anatomy (CA) is the study of shape and form in medical imaging. The study of deformable shapes in computational anatomy rely on high-dimensional diffeomorphism groups which generate orbits of the form . In CA, this orbit is in general considered a smooth Riemannian manifold since at every point of the manifold there is an inner product inducing the norm on the tangent space that varies smoothly from point to point in the manifold of shapes . This is generated by viewing the group of diffeomorphisms as a Riemannian manifold with , associated to the tangent space at . This induces the norm and metric on the orbit under the action from the group of diffeomorphisms.

Diffeomorphometry is the metric study of imagery, shape and form in the discipline of computational anatomy (CA) in medical imaging. The study of images in computational anatomy rely on high-dimensional diffeomorphism groups which generate orbits of the form , in which images can be dense scalar magnetic resonance or computed axial tomography images. For deformable shapes these are the collection of manifolds , points, curves and surfaces. The diffeomorphisms move the images and shapes through the orbit according to which are defined as the group actions of computational anatomy.

References

  1. Christensen, G.E.; Rabbitt, R.D.; Miller, M.I. (1996-02-01). "Deformable Templates Using Large Deformation Kinematics". IEEE Transactions on Image Processing. 5 (10): 1435–1447. Bibcode:1996ITIP....5.1435C. doi:10.1109/83.536892. PMID   18290061.
  2. Ashburner, J. (July 2007). "A fast diffeomorphic image registration algorithm". NeuroImage. 38 (1): 95–113. doi:10.1016/j.neuroimage.2007.07.007. PMID   17761438. S2CID   545830.
  3. Avants, B. B.; Epstein, C. L.; Grossman, M.; Gee, J. C. (2008-02-01). "Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain". Medical Image Analysis. 12 (1): 26–41. doi:10.1016/j.media.2007.06.004. ISSN   1361-8423. PMC   2276735 . PMID   17659998.
  4. Miller, Michael; Banerjee, Ayananshu; Christensen, Gary; Joshi, Sarang; Khaneja, Navin; Grenander, Ulf; Matejic, Larissa (1997-06-01). "Statistical methods in computational anatomy". Statistical Methods in Medical Research. 6 (3): 267–299. doi:10.1177/096228029700600305. PMID   9339500. S2CID   35247542.
  5. U. Grenander and M. I. Miller (2007-02-08). Pattern Theory: From Representation to Inference. Oxford University Press. ISBN   9780199297061.
  6. M. I. Miller and S. Mori and X. Tang and D. Tward and Y. Zhang (2015-02-14). Bayesian Multiple Atlas Deformable Templates. Brain Mapping: An Encyclopedic Reference. Academic Press. ISBN   9780123973160.
  7. Srivastava, S.; Miller, M. I.; Grenander, U. (1997-01-01). Byrnes, Christopher I.; Datta, Biswa N.; Martin, Clyde F.; Gilliam, David S. (eds.). Ergodic Algorithms on Special Euclidean Groups for ATR. Systems & Control: Foundations & Applications. Birkhäuser Boston. pp. 327–350. CiteSeerX   10.1.1.44.4751 . doi:10.1007/978-1-4612-4120-1_18. ISBN   978-1-4612-8662-2.
  8. 1 2 P. Dupuis, U. Grenander, M.I. Miller, Existence of Solutions on Flows of Diffeomorphisms, Quarterly of Applied Math, 1997.
  9. 1 2 Trouvé, A. (1995). "Action de groupe de dimension infinie et reconnaissance de formes". Comptes Rendus de l'Académie des Sciences, Série I (in French). 321 (8): 1031–1034.
  10. Tang, Xiaoying; Oishi, Kenichi; Faria, Andreia V.; Hillis, Argye E.; Albert, Marilyn S.; Mori, Susumu; Miller, Michael I. (2013-06-18). "Bayesian Parameter Estimation and Segmentation in the Multi-Atlas Random Orbit Model". PLOS ONE. 8 (6): e65591. Bibcode:2013PLoSO...865591T. doi: 10.1371/journal.pone.0065591 . PMC   3688886 . PMID   23824159.