Bell Labs Digital Synthesizer

Last updated

The Bell Labs Digital Synthesizer, better known as the Alles Machine or Alice, was an experimental additive synthesizer designed by Hal Alles at Bell Labs during the 1970s. The Alles Machine used computer-controlled 16-bit digital synthesizer operating at 30k samples/sec with 32 sine-wave oscillators. The Alles Machine has been called the first true digital additive synthesizer, [1] following on earlier Bell experiments that were partially or wholly implemented as software on large computers. Only one full-length composition was recorded for the machine, before it was disassembled and donated to Oberlin Conservatory's TIMARA department in 1981. [2] Several commercial synthesizers based on the Alles design were released during the 1980s, including the Atari AMY sound chip.

Contents

Description

The Alles Machine consisted of three main parts; an LSI-11 microcomputer, the programmable sound generators, and a number of different input devices. The system was packaged into a large single unit, and weighed 300 pounds – the designers optimistically referred to it as being portable. [3]

The microcomputer was supplied with two 8-inch floppy disk drives (from Heathkit, which sold their own LSI-11 machine, the H11) and an AT&T color video terminal. It was connected to a customized analog-to-digital converter that sampled the inputs at 7 bit resolution 250 times a second. The input devices consisted of two 61-key piano keyboards, four 3-axis analog joysticks, a bank of 72 sliders, and various switches. [3] Any of the controllers could be used to control any parameter, under program control. The inputs were interpreted and then used to generate outputs that were sent to the sound generators as a series of parameters. The bandwidth needed to control the synthesizer was quite limited. The computer could process about 1,000 parameter changes per second before it would bog down in the CPU. [4]

The sound generator was fairly complex, containing 1,400 integrated circuits. [5] The first bank of 32 oscillators were used as master signals, and generally meant the system had up to 32-note polyphony (see below). A second set of 32 oscillators was slaved to one of the masters, generating the first N harmonics, where N was from 1 (first harmonic) to 127. Additionally there were a bank of 32 programmable filters, 32 amplitude multipliers, and 256 envelope generators. All of these signals could be mixed in an arbitrary fashion into a bank of 192 accumulators. These were then sent to one of four 16-bit output channels, and from there to a digital-to-analog converter for output. [5]

The actual waveforms were generated by looking up the amplitude for a given time from a 64 kWord ROM-based table. Alles used several tricks in the table in order to reduce the amount of math the system needed to run in the controller CPU. In one instance, a multiplication was avoided by looking up two numbers from the table and subtracting them, as it was noticed the result was the same as a multiplication of two related numbers. Running everything was a set of 255 timers with 16 FIFO stacks for events. The controller posted events into the queues which were then sorted by timestamp and fed into the generator in order. [5]

Influence

The Alles Machine was highly influential within the industry, but the cost of implementation was so high that it was some time before machines based on its principles were available at a price point most musicians could afford.

Crumar of Italy and Music Technologies' of New York collaborated to form Digital Keyboards in an effort to re-package the Alles Machine. The result was a smaller two-part system, with a Z-80-based microcomputer and disk drives as one unit, and a single keyboard and limited set of input sliders as the second unit. Known as the Crumar General Development System, or GDS, it was released in 1980 for $30,000. It was sold to studios that needed a flexible system that could guarantee the same performance time after time. [6] [7] [8] Analog synths of the same era were subject to environmental changes in the input controls that meant every performance, even after a short delay, would be different. Wendy Carlos owned a GDS and used it on the Tron soundtrack. [9] She was also one of the instrument's most devoted users, and still uses it to this day.

Digital Keyboards Synergy Digital Keyboards Synergy.jpg
Digital Keyboards Synergy

Further work on the same basic concept produced the lower-cost Synergy, released in 1981. [10] The Synergy removed the computer component, and re-packaged the entire system into a case with a 77-key keyboard. Another additive synth reached the market at about the same time, the Con Brio ADS200, at the slightly lower price of $20,000. Neither the Con Brio or GDS sold well, while the Synergy managed to find some market share. However, when the famous Yamaha DX7 was released in 1983, it quickly took over the market. The DX7's FM synthesis offered the same basic control over output sound as an additive synth, but could duplicate the effects of many ganged oscillators in as few as two. [11] Its $2,000 price point eliminated any competition from the additive synths. Production of the Synergy ended in 1985.

Mulogix Slave 32 Mulogix Slave32.jpg
Mulogix Slave 32

A final version of the original machine was produced after Digital Keyboards was shut down in early 1985. Digital Keyboards' chief designer, Mercer "Stoney" Stockell, decamped and formed Mulogix with Jim Wright and Jerry Ptascynski. The Mulogix Slave 32 was a Synergy re-packaged into a 2U rack-mount module with a MIDI interface. The Slave 32 could read and write EPROM cartridges from the Synergy. [12]

In 1981, Caesar Castro and Alan Heaberland introduced their Casheab S-100 board. It also bore striking resemblance to Alles & Bayer's design. One early adopter was Roger Powell who designed his "Databoy" system around it. Powell used a home-brew 8800 system to scan the keyboard and modulation controllers as well as provide access to a custom library of sounds he created. [13]

Starting in 1984, Atari started an effort to develop a single-chip implementation of the Alles Machine in their Sierra project. The resulting AMY 1 chip used 64 oscillators and added noise generators to provide special effects needed in games. However the AMY was never released, and a 3rd party effort to produce a low-cost synth based on the chip ended when Atari threatened a lawsuit. [14]

Artists who performed on the instrument

Two artists of note known to have performed on the Alles Machine are Roger Powell and Laurie Spiegel. Powell gave the first public Live performance. Unfortunately, this performance was never recorded. The other known performance is by composer Laurie Spiegel.

Several tracks on the album Games by Larry Fast (Synergy) were taken from sessions recorded at Bell Labs on the digital synthesizer.

Composer and electronic keyboardist Don Slepian was hired as Artist in Residence in the Acoustics and Behavioral Research department of Bell Labs under director Max V. Mathews from 1979 to 1982 to develop works using the Bell Labs Digital Synthesizer. [15] [16] During this time he produced "Sea of Bliss" [17] and "Rhythm of Life", [18] two full length pieces based on the Alles Machine.

[19]

Related Research Articles

<span class="mw-page-title-main">Digital synthesizer</span> Synthesizer that uses digital signal processing to make sounds

A digital synthesizer is a synthesizer that uses digital signal processing (DSP) techniques to make musical sounds. This in contrast to older analog synthesizers, which produce music using analog electronics, and samplers, which play back digital recordings of acoustic, electric, or electronic instruments. Some digital synthesizers emulate analog synthesizers; others include sampling capability in addition to digital synthesis.

<span class="mw-page-title-main">Electronic musical instrument</span> Musical instrument that uses electronic circuits to generate sound

An electronic musical instrument or electrophone is a musical instrument that produces sound using electronic circuitry. Such an instrument sounds by outputting an electrical, electronic or digital audio signal that ultimately is plugged into a power amplifier which drives a loudspeaker, creating the sound heard by the performer and listener.

<span class="mw-page-title-main">Frequency modulation synthesis</span> Form of sound synthesis

Frequency modulation synthesis is a form of sound synthesis whereby the frequency of a waveform is changed by modulating its frequency with a modulator. The (instantaneous) frequency of an oscillator is altered in accordance with the amplitude of a modulating signal.

<span class="mw-page-title-main">Analog synthesizer</span> Synthesizer that uses analog circuits

An analogsynthesizer is a synthesizer that uses analog circuits and analog signals to generate sound electronically.

<span class="mw-page-title-main">Ensoniq ESQ-1</span> Synthesizer

Ensoniq ESQ-1 is a 61-key, velocity sensitive, eight-note polyphonic and multitimbral synthesizer released by Ensoniq in 1985. It was marketed as a "digital wave synthesizer" but was an early Music Workstation. Although its voice generation is typically subtractive in much the same fashion as most analog synthesizers that preceded it, its oscillators are neither voltage nor "digitally controlled", but true digital oscillators, provided by a custom Ensoniq wavetable chip. The signal path includes analog resonant low-pass filters and an analog amplifier.

<span class="mw-page-title-main">ARP Odyssey</span> Electronic musical instrument developed by ARP Instruments

The ARP Odyssey is an analog synthesizer introduced by ARP Instruments in 1972.

<span class="mw-page-title-main">Korg OASYS</span> Workstation synthesizer

The Korg OASYS is a workstation synthesizer released in early 2005, 1 year after the successful Korg Triton Extreme. Unlike the Triton series, the OASYS uses a custom Linux operating system that was designed to be arbitrarily expandable via software updates, with its functionality limited only by the PC-like hardware.

microKORG Synthesizer released in 2002

The microKORG is a MIDI-capable digital synthesizer/vocoder from Korg featuring DSP-based analog modelling. The synthesizer is built in such a way that it is essentially a Korg MS-2000 with a programmable step arpeggiator, a less advanced vocoder, lack of motion sequencing, lack of an XLR microphone input, and in a smaller case with fewer real-time control knobs.

<span class="mw-page-title-main">Korg DW-8000</span> Hybrid digital-analog synthesizer

The Korg DW-8000 synthesizer is an eight-voice polyphonic hybrid digital-analog synthesizer 61-note keyboard instrument released in 1985. By the time of its launch, Korg had already begun a common trend in 1980s synthesizer design: using numerical codes to access or change parameters with its predecessor - the Korg Poly-61, which was widely regarded as the company's first "knobless" synthesizer. This was a move away from the heavily laden, complex control panels of earlier designs.

<span class="mw-page-title-main">Crumar</span> Italian synthesiser manufacturer

Crumar was an Italian manufacturer of electronic musical instruments. It was established by Mario Crucianelli in the late 1960s, and manufactured synthesizers and keyboards during the '70s and '80s. Its name is a portmanteau of "Crucianelli" and the name of his business partner, Marchetti. The company appears to have grown out of the Crucianelli accordion company and also continued to manufacture accordions under both names.

<span class="mw-page-title-main">Nord Modular</span> Line of synthesizers

The Nord Modular series is a line of synthesizers produced by Clavia, a Swedish digital synthesizer manufacturer. The Nord Modular series, in common with their sister range the Nord Lead series, are analogue modelling synthesizers, producing sounds that approximate those produced by conventional analogue synths by using DSP chips to digitally model analogue circuitry.

<span class="mw-page-title-main">Micromoog</span> Monophonic analog synthesizer

The Moog model 2090 Micromoog is a monophonic analog synthesizer produced by Moog Music from 1975 to 1979.

<span class="mw-page-title-main">Korg MS2000</span> Synthesizer released in 2000

The Korg MS2000 is a virtual analog synthesizer produced by the Japanese electronic musical instrument manufacturer Korg.

<span class="mw-page-title-main">Korg Wavestation</span> Synthesizer

The Korg Wavestation is a vector synthesis synthesizer first produced in the early 1990s and later re-released as a software synthesizer in 2004. Its primary innovation was Wave Sequencing, a method of multi-timbral sound generation in which different PCM waveform data are played successively, resulting in continuously evolving sounds. The Wavestation's "Advanced Vector Synthesis" sound architecture resembled early vector synths such as the Sequential Circuits Prophet VS.

<span class="mw-page-title-main">Synthesizer</span> Electronic musical instrument

A synthesizer is an electronic musical instrument that generates audio signals. Synthesizers typically create sounds by generating waveforms through methods including subtractive synthesis, additive synthesis and frequency modulation synthesis. These sounds may be altered by components such as filters, which cut or boost frequencies; envelopes, which control articulation, or how notes begin and end; and low-frequency oscillators, which modulate parameters such as pitch, volume, or filter characteristics affecting timbre. Synthesizers are typically played with keyboards or controlled by sequencers, software or other instruments and may be synchronized to other equipment via MIDI.

The Atari AMY was a 64-oscillator additive synthesizer implemented as a single-IC sound chip. It was initially developed as part of a new advanced chipset, codenamed "Rainbow" that included a graphics processor and sprite generator. Rainbow was considered for use in the 16/32-bit workstation known as Sierra, but the Sierra project was bogged down in internal committee meetings. However the Rainbow chipset development continued up until Atari's CED and HCD divisions were sold to Tramel Technologies, Ltd. For a time, AMY was slated to be included in the Atari 520ST, then an updated version of the Atari 8-bit family, the 65XEM, but development was discontinued. The technology was later sold, but when the new owners started to introduce it as a professional synthesizer, Atari sued, and work on the project ended.

<span class="mw-page-title-main">Korg Z1</span> Synthesizer released in 1997

The Korg Z1 is a physical modelling sound synthesiser released in 1997. Touted as a polyphonic Prophecy, the Z1 implements 13 synthesis types, all derived from the original OASYS synthesizer.

<span class="mw-page-title-main">TIMARA</span>

TIMARA is a program at the Oberlin Conservatory of Music notable for its importance in the history of electronic music. Established in 1967, TIMARA is well known as the world's first conservatory program in electronic music. Department alumni have included Cory Arcangel, Christopher Rouse, Dary John Mizelle, Dan Forden and Amy X Neuburg.

<span class="mw-page-title-main">Yamaha DX21</span> 1985 digital FM synthesizer

The Yamaha DX21 is a digital controlled bi-timbral programmable digital FM synthesizer with a four operator synth voice generator which was released in 1985. It uses sine wave-based frequency modulation (FM) synthesis. It has two FM tone generators and a 32-voice random-access memory (RAM), 32 user voices and 128 read-only memory (ROM) factory preset sounds. As a programmable synth, it enables users to create their own unique synthesized tones and sound effects by using the algorithms and oscillators. The instrument weighs 8 kg (17.6 lbs). On its release, it sold for $795.

The history of home keyboards lies in mechanical musical instrument keyboards, electrified keyboards and 1960s and 1970s synthesizer technologies.

References

Citations

  1. Joel Chadabe, "Electric Sound", Prentice Hall, 1997, ISBN   978-0-13-303231-4, pg. 178
  2. "A Technical History of Computer Music" Archived 2010-06-26 at the Wayback Machine
  3. 1 2 Alles 1976, pg. 5
  4. Alles 1976, pg. 7
  5. 1 2 3 Alles 1976, pg. 6
  6. Manning 2004, pg. 229
  7. "CRUMAR/DKI GDS System & Synergy". Archived from the original on 1997-01-15. Retrieved 2010-03-27.
  8. Stephen Mann, "Sythesizers grow into digital keyboard instruments", InfoWorld, 5 April 1982, pg. 22
  9. "TRON: Original Motion Picture Soundtrack"
  10. Manning 2004, pg. 230
  11. Chris Chafe, "A Short History of Digital Sound Synthesis by Composers in the U.S.A."
  12. Mark Vail, "Vintage Synthesizers", Miller Freeman, 1993
  13. Vale, Mark (2000). Keyboard Magazine Presents Vintage Synthesizers. Backbeat Books. p. 92. ISBN   9780879306038.
  14. "AMY"
  15. "Memories of Max Mathews". 14 June 2019.
  16. "Max Mathews and Me". 8 October 2019.
  17. "Sea of Bliss". Amazon.
  18. "Rhythm of Life". Amazon.
  19. File:Don-Slepian-Alles-Machine-1980.jpg

Bibliography

  • Hal Alles, "A Portable Digital Sound Synthesis System", Computer Music Journal, Volume 1 Number 3 (Fall 1976), pg. 5-9
  • Hal Alles (Alles 1979), "An Inexpensive Digital Sound Synthesizer", Computer Music Journal, Volume 3 Number 3 (Fall 1979), pg. 28-37
  • Hal Alles (Alles 1980), "Music Synthesis Using Real Time Digital Techniques", Proceedings of the IEEE, Volume 68 Number 4 (April 1980), pg. 436–449
  • Peter Manning, "Electronic and Computer Music", Oxford University Press US, 2004