Bendix drive

Last updated
Bendix drive BendixDrive.jpg
Bendix drive
Patent Drawing (colored):
.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}
1: electric motor
5: rotatable screw shaft
6: pinion
8: coiled spring
13: flywheel US1327132-drawings-page-1-color-coded.png
Patent Drawing (colored):
  • 1: electric motor
  • 5: rotatable screw shaft
  • 6: pinion
  • 8: coiled spring
  • 13: flywheel

A Bendix drive is a type of engagement mechanism used in starter motors of internal combustion engines. The device allows the pinion gear of the starter motor to engage or disengage the ring gear (which is attached to the flywheel or flexplate of the engine) automatically when the starter is powered or when the engine fires, respectively. It is named after its inventor, Vincent Hugo Bendix.

Operation

The Bendix system places the starter drive pinion on a helically-splined drive shaft of the starter motor. When the starter motor first begins turning, the inertia of the drive pinion assembly momentarily resists rotation even though the shaft through its center is turning. Since the pinion has internal splines matching those on the drive shaft, this causes the pinion gear to slide axially to make initial side contact with the gear teeth on ring gear of the engine. The pinion then rotates enough to allow the gears to mesh, after which the pinion then continues along the shaft to reach a stop on the end of its allowed travel, at which point the gears are fully meshed. Since the pinion gear can no longer travel axially, it must then turn with the drive shaft and begins to drive the ring gear. When the engine starts, backdrive from the ring gear causes the drive pinion to exceed the rotational speed of the starter, at which point the drive pinion is forced back along the helical spline and out of mesh with the ring gear.

The torque of the starter motor is transferred to the starter motor drive shaft through a heavy-duty coiled spring. When the starter motor powers and drives the pinion to engage with the flywheel, this spring cushions the rotational impact as the gears and mesh and begin turning together.

The main drawback to the Bendix drive is that it relies on a certain amount of "clash" between the teeth of the pinion and the ring gears before they slip into place and mate completely; the teeth of the pinion are already spinning when they come into contact with the static ring gear, and unless they happen to align perfectly at the moment they engage, the pinion teeth will strike the teeth of the ring gear side-to-side rather than face-to-face, and continue to rotate until both align. This increases wear on both sets of teeth, although the pinion gear typically wears more due to being made of a softer material than the ring gear, because the pinion gear is more easily replaced. For this reason the Bendix drive has been largely superseded in starter motor design by the pre-engagement system using a starter solenoid.

Related Research Articles

<span class="mw-page-title-main">Gear</span> Rotating circular machine part with teeth that mesh with another toothed part

A gear is a rotating circular machine part having cut teeth or, in the case of a cogwheel or gearwheel, inserted teeth, which mesh with another (compatible) toothed part to transmit rotational power. While doing so, they can change the torque and rotational speed being transmitted and also change the rotational axis of the power being transmitted. The teeth on the two meshing gears all have the same shape.

<span class="mw-page-title-main">Starter (engine)</span> Device used to start an internal combustion engine

A starter is a device used to rotate (crank) an internal-combustion engine so as to initiate the engine's operation under its own power. Starters can be electric, pneumatic, or hydraulic. The starter can also be another internal-combustion engine in the case, for instance, of very large engines, or diesel engines in agricultural or excavation applications.

<span class="mw-page-title-main">Differential (mechanical device)</span> Type of simple planetary gear train

A differential is a gear train with three drive shafts that has the property that the rotational speed of one shaft is the average of the speeds of the others. A common use of differentials is in motor vehicles, to allow the wheels at each end of a drive axle to rotate at different speeds while cornering. Other uses include clocks and analog computers.

<span class="mw-page-title-main">Rack and pinion</span> Type of linear actuator

A rack and pinion is a type of linear actuator that comprises a circular gear engaging a linear gear. Together, they convert between rotational motion and linear motion. Rotating the pinion causes the rack to be driven in a line. Conversely, moving the rack linearly will cause the pinion to rotate. A rack-and-pinion drive can use both straight and helical gears. Though some suggest helical gears are quieter in operation, no hard evidence supports this theory. Helical racks, while being more affordable, have proven to increase side torque on the datums, increasing operating temperature leading to premature wear. Straight racks require a lower driving force and offer increased torque and speed per fraction of gear ratio which allows lower operating temperature and lessens viscal friction and energy use. The maximum force that can be transmitted in a rack-and-pinion mechanism is determined by the torque on the pinion and its size, or, conversely, by the force on the rack and the size of the pinion.

<span class="mw-page-title-main">Manual transmission</span> Motor vehicle manual gearbox; stick shift

A manual transmission (MT), also known as manual gearbox, standard transmission, or stick shift, is a multi-speed motor vehicle transmission system, where gear changes require the driver to manually select the gears by operating a gear stick and clutch.

<span class="mw-page-title-main">Freewheel</span> Mechanism which disconnects a driveshaft from a faster-rotating driven shaft

In mechanical or automotive engineering, a freewheel or overrunning clutch is a device in a transmission that disengages the driveshaft from the driven shaft when the driven shaft rotates faster than the driveshaft. An overdrive is sometimes mistakenly called a freewheel, but is otherwise unrelated.

<span class="mw-page-title-main">Drive shaft</span> Mechanical component for transmitting torque and rotation

A drive shaft, driveshaft, driving shaft, tailshaft, propeller shaft, or Cardan shaft is a component for transmitting mechanical power, torque, and rotation, usually used to connect other components of a drivetrain that cannot be connected directly because of distance or the need to allow for relative movement between them.

<span class="mw-page-title-main">Starter ring gear</span>

A starter ring gear is a part attached to an internal combustion engine that is part of the assembly which transfers the torque from the starter motor to the engine's crankshaft, in order to start the engine. The starter ring gear is usually made from medium carbon steel.

<span class="mw-page-title-main">Gear train</span> Mechanical transmission using multiple gears

A gear train or gear set is a machine element of a mechanical system formed by mounting two or more gears on a frame such that the teeth of the gears engage.

<span class="mw-page-title-main">Reduction drive</span> Mechanical device to shift rotational speed

A reduction drive is a mechanical device to shift rotational speed. A planetary reduction drive is a small scale version using ball bearings in an epicyclic arrangement instead of toothed gears.

<span class="mw-page-title-main">Starter solenoid</span> Internal combustion engine electromagnet

A starter solenoid is an electromagnet which is actuated to engage the starter motor of an internal combustion engine. It is normally attached directly to the starter motor which it controls.

<span class="mw-page-title-main">Hirth joint</span> Type of mechanical connection

A Hirth joint or Hirth coupling is a type of mechanical connection named after its developer Albert Hirth. It is used to connect two pieces of a shaft together and is characterized by tapered teeth that mesh together on the end faces of each half shaft.

<span class="mw-page-title-main">Spiral bevel gear</span>

A spiral bevel gear is a bevel gear with helical teeth. The main application of this is in a vehicle differential, where the direction of drive from the drive shaft must be turned 90 degrees to drive the wheels. The helical design produces less vibration and noise than conventional straight-cut or spur-cut gear with straight teeth.

<span class="mw-page-title-main">Ravigneaux planetary gearset</span>

The Ravigneaux gearset is a double planetary gear set, invented by Pol Ravigneaux, who filed a patent application on July 28, 1949, in Neuilly-sur-Seine France. This planetary gear set, commonly used in automatic transmissions, is constructed from two gear pairs, ring–planet and planet–planet.

A spline is a ridge or tooth on a drive shaft that matches with a groove in a mating piece and transfers torque to it, maintaining the angular correspondence between them.

In horology, a wheel train is the gear train of a mechanical watch or clock. Although the term is used for other types of gear trains, the long history of mechanical timepieces has created a traditional terminology for their gear trains which is not used in other applications of gears.

<span class="mw-page-title-main">Gear shaping</span>

Gear shaping is a machining process for creating teeth on a gear using a cutter. Gear shaping is a convenient and versatile method of gear cutting. It involves continuous, same-plane rotational cutting of gear.

<span class="mw-page-title-main">Barring engine</span>

A barring engine is a small engine that forms part of the installation of a large engine, and is used to turn the main engine to a favourable position from which it can be started. If the main engine has stopped close to its dead centre it is unable to restart itself. Barring may also be done to turn the engine over slowly (unloaded) for maintenance, or to prevent belt drives being left too long in one position and taking a "set".

<span class="mw-page-title-main">Strain wave gearing</span> Mechanical transmission system with flexing

Strain wave gearing is a type of mechanical gear system that uses a flexible spline with external teeth, which is deformed by a rotating elliptical plug to engage with the internal gear teeth of an outer spline.

References