Benjamin Wolozin

Last updated
Benjamin Wolozin
Benjamin Wolozin.jpg
Wolozin in 2006
Born1959 [1]
Education Wesleyan University (BA)
Albert Einstein College of Medicine (MD) (PhD) [2]
Scientific career
Fields Pharmacology, Neurology
Institutions Boston University Chobanian & Avedisian School of Medicine (Department of Pharmocology) [3]

Benjamin Wolozin is an American pharmacologist and neurologist currently at Boston University School of Medicine. He is also an Elected Fellow of the American Association for the Advancement of Science. [4] [5]

Contents

Education

Wolozin received his B.A. from Wesleyan University (Middletown, CT) in 1980 and his M.D., Ph.D. from the Albert Einstein College of Medicine in 1988. [6] [7]

Career

He is currently a professor of Pharmacology, Neurology, and the Program in Neuroscience at Boston University School of Medicine. Wolozin is a member of Evans Center for Interdisciplinary Biomedical Research and Genome Science Institute in Boston University. He is also co-founder and Chief Scientific Officer (CSO) of Aquinnah Pharmaceuticals Inc., a biotechnology company developing novel therapeutics to treat Alzheimer's disease, and Amyotrophic Lateral Sclerosis.

Honours

Wolozin has published over 150 papers, including publications in Science, Nature, and PNAS. He has been elected as a fellow of the AAAS, the Spivack Distinguished Scholar in Neuroscience Award (BU), the Zenith Award (Alzheimer Association), Collaborator of the Year (BU Evans Center), Fellow of the Society for Skeptical Inquiry, Teacher of the year (Loyola University), A.E. Bennett Award (Soc. For Biological Psychiatry), Commissioned Officer Commendation Award (PHS), Donald B. Linsdley Award (Soc. For Neuroscience), Medical Scientist Training Fellowship, NSF Fellowship (declined), Hawk Prize for Biochemical Research (Wesleyan), Departmental Honors and Magna Cum Laude Latin honors (Wesleyan University). [8]

Works

Wolozin has research experience in the field of neurodegenerative disease. His research investigates the pathophysiology of several neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. His research examines molecular and cellular aspects of disease, and utilizes a variety of transgenic models including mice, C. elegans, primary neurons and cell lines. Wolozin has also studied human brain samples or cell lines from patients. His specific research interests emphasize the role of protein aggregation in neurodegenerative disease as well as metabolic consequences of stress linked to protein aggregation or cellular damage.

Wolozin's contributions to understanding of neurodegenerative disease cover a wide range of subjects. In 1986 he identified the antibody Alz-50, which was one of the first antibodies to identify the conformation specific epitopes of microtubule associated protein tau that are abundant in the brains of patients with Alzheimer's disease. [9] In 2000 he was the first scientist to show that individuals taking statins (a form of cholesterol lowering medication) exhibit much lower rates of Alzheimer's disease. [10]

Stress granules and neurodegenerative diseases

Since 2008, Wolozin's research has focused on the role of RNA binding proteins and stress granules in neurodegenerative diseases. RNA binding proteins contain domains that have only a few types of amino acids; these domains are termed "low complexity domains" and have a strong tendency to aggregate. [11] A highly unusual and important aspect of these proteins is that they use reversible aggregation as normal biological mechanism to sequester RNA transcripts. RNA binding proteins form a variety of cellular aggregates including stress granules, transport granules, P-bodies and nuclear speckles. [12] In 2010 Wolozin's group was one of the first groups to suggest that dysfunction of the stress granule pathway contributes to the pathophysiology of amyotrophic lateral sclerosis. [13] Since then, a growing body of evidence, increasingly highlights the important contributions of RNA-binding proteins (RBPs), stress granules and translational regulation in the pathophysiology of neurodegenerative disease. This work prompted the concept that "regulated protein aggregation", which provides a theoretical framework for understanding the biology of neurodegenerative disease, including Alzheimer's disease and Amyotrophic Lateral Sclerosis. The cell controls the location and disposition of RNA through the binding of RNA-binding proteins; these RNA binding proteins consolidate to form RNA granules through reversible aggregation of their low complexity domains. Recently, the biophysics of RNA granule formation has been shown to fall under the aegis of a general property, termed liquid liquid phase separation (LLPS). [14] LLPS occurs when RNA binding proteins associate to form structures analogous to liquid droplets, which separate from surrounding aqueous medium.

The Wolozin laboratory has extended this work to explain the pathophysiology of Alzheimer's disease [15] [16] Work from the Wolozin laboratory demonstrates that the pathology occurring in neurons (neurofibrillary tangles) is associated with RNA binding proteins. [17] [18] This appears to occur because tau (the main building block of neurofibrillary tangles) stimulates stress granule formation. [19] Importantly, the converse is also true. Stress granules appear able to stimulate tau pathology, leading to the hypothesis that Alzheimer's disease occurs in part because of a hyperactive stress granule response stimulated by chronic diseases and/or genetic changes, which results in abundant tau pathology and subsequent neurodegeneration. [20]

The stress granule/LLPS hypothesis is important because it identifies new directions for therapeutic intervention for tauopathies and other neurodegenerative diseases. Wolozin has developed methods to analyze the pathological RNA granules and stress granules that accumulate in brain diseases. He has also developed a series of compounds that potently and effectively inhibit TDP-43 aggregation in multiple neuronal models. In 2014, Wolozin combined forces with Glenn Larsen to co-found the biotechnology company, Aquinnah Pharmaceuticals. [21]

Oath of the Scientist

Wolozin co-authored the scientists' pledge with Katya Ravid. [22] The pledge provides the equivalent for scientists of the Hippocratic Oath and is recited at graduation at some schools.

Related Research Articles

<span class="mw-page-title-main">Hsp70</span> Family of heat shock proteins

The 70 kilodalton heat shock proteins are a family of conserved ubiquitously expressed heat shock proteins. Proteins with similar structure exist in virtually all living organisms. Intracellularly localized Hsp70s are an important part of the cell's machinery for protein folding, performing chaperoning functions, and helping to protect cells from the adverse effects of physiological stresses. Additionally, membrane-bound Hsp70s have been identified as a potential target for cancer therapies and their extracellularly localized counterparts have been identified as having both membrane-bound and membrane-free structures.

<span class="mw-page-title-main">Tau protein</span> Group of six protein isoforms produced from the MAPT gene

The tau proteins form a group of six highly soluble protein isoforms produced by alternative splicing from the gene MAPT. They have roles primarily in maintaining the stability of microtubules in axons and are abundant in the neurons of the central nervous system (CNS), where the cerebral cortex has the highest abundance. They are less common elsewhere but are also expressed at very low levels in CNS astrocytes and oligodendrocytes.

Inclusion bodies are aggregates of specific types of protein found in neurons, and a number of tissue cells including red blood cells, bacteria, viruses, and plants. Inclusion bodies of aggregations of multiple proteins are also found in muscle cells affected by inclusion body myositis and hereditary inclusion body myopathy.

<span class="mw-page-title-main">Neuroprotection</span> Relative preservation of neurons

Neuroprotection refers to the relative preservation of neuronal structure and/or function. In the case of an ongoing insult the relative preservation of neuronal integrity implies a reduction in the rate of neuronal loss over time, which can be expressed as a differential equation.

<span class="mw-page-title-main">Tauopathy</span> Medical condition

Tauopathies are a class of neurodegenerative diseases characterized by the aggregation of abnormal tau protein. Hyperphosphorylation of tau proteins causes them to dissociate from microtubules and form insoluble aggregates called neurofibrillary tangles. Various neuropathologic phenotypes have been described based on the anatomical regions and cell types involved as well as the unique tau isoforms making up these deposits. The designation 'primary tauopathy' is assigned to disorders where the predominant feature is the deposition of tau protein. Alternatively, diseases exhibiting tau pathologies attributed to different and varied underlying causes are termed 'secondary tauopathies'. Some neuropathologic phenotypes involving tau protein are Alzheimer's disease, frontotemporal dementia, progressive supranuclear palsy, and corticobasal degeneration.

<span class="mw-page-title-main">Neurodegenerative disease</span> Central nervous system disease

A neurodegenerative disease is caused by the progressive loss of neurons, in the process known as neurodegeneration. Neuronal damage may also ultimately result in their death. Neurodegenerative diseases include amyotrophic lateral sclerosis, multiple sclerosis, Parkinson's disease, Alzheimer's disease, Huntington's disease, multiple system atrophy, tauopathies, and prion diseases. Neurodegeneration can be found in the brain at many different levels of neuronal circuitry, ranging from molecular to systemic.Because there is no known way to reverse the progressive degeneration of neurons, these diseases are considered to be incurable; however research has shown that the two major contributing factors to neurodegeneration are oxidative stress and inflammation. Biomedical research has revealed many similarities between these diseases at the subcellular level, including atypical protein assemblies and induced cell death. These similarities suggest that therapeutic advances against one neurodegenerative disease might ameliorate other diseases as well.

<span class="mw-page-title-main">Stress granule</span> Cytoplasmic biomolecular condensates of proteins and RNA occurring in cells under stress

In cellular biology, stress granules are biomolecular condensates in the cytosol composed of proteins and RNAs that assemble into 0.1–2 μm membraneless organelles when the cell is under stress. The mRNA molecules found in stress granules are stalled translation pre-initiation complexes associated with 40S ribosomal subunits, translation initiation factors, poly(A)+ mRNAs and RNA-binding proteins (RBPs). While they are membraneless organelles, stress granules have been proposed to be associated with the endoplasmatic reticulum. There are also nuclear stress granules. This article is about the cytosolic variety.

<span class="mw-page-title-main">Protein kinase R</span> Human protein and coding gene

Protein kinase RNA-activated also known as protein kinase R (PKR), interferon-induced, double-stranded RNA-activated protein kinase, or eukaryotic translation initiation factor 2-alpha kinase 2 (EIF2AK2) is an enzyme that in humans is encoded by the EIF2AK2 gene on chromosome 2. PKR is a serine/tyrosine kinase that is 551 amino acids long.

<span class="mw-page-title-main">Proteinopathy</span> Diseases caused by abnormal protein structure

In medicine, proteinopathy, or proteopathy, protein conformational disorder, or protein misfolding disease, is a class of diseases in which certain proteins become structurally abnormal, and thereby disrupt the function of cells, tissues and organs of the body.

<span class="mw-page-title-main">TIA1</span> Mammalian protein found in Homo sapiens

TIA1 or Tia1 cytotoxic granule-associated rna binding protein is a 3'UTR mRNA binding protein that can bind the 5'TOP sequence of 5'TOP mRNAs. It is associated with programmed cell death (apoptosis) and regulates alternative splicing of the gene encoding the Fas receptor, an apoptosis-promoting protein. Under stress conditions, TIA1 localizes to cellular RNA-protein conglomerations called stress granules. It is encoded by the TIA1 gene.

<span class="mw-page-title-main">TAR DNA-binding protein 43</span> Protein found in humans

TAR DNA-binding protein 43 is a protein that in humans is encoded by the TARDBP gene.

<span class="mw-page-title-main">RBFOX1</span> Protein-coding gene in the species Homo sapiens

Fox-1 homolog A, also known as ataxin 2-binding protein 1 (A2BP1) or hexaribonucleotide-binding protein 1 (HRNBP1) or RNA binding protein, fox-1 homolog (Rbfox1), is a protein that in humans is encoded by the RBFOX1 gene.

<span class="mw-page-title-main">Protein aggregation</span> Accumulation of clumps of misfolded or disordered proteins

In molecular biology, protein aggregation is a phenomenon in which intrinsically-disordered or mis-folded proteins aggregate either intra- or extracellularly. Protein aggregates have been implicated in a wide variety of diseases known as amyloidoses, including ALS, Alzheimer's, Parkinson's and prion disease.

Fasudil (INN) is a potent Rho-kinase inhibitor and vasodilator. Since it was discovered, it has been used for the treatment of cerebral vasospasm, which is often due to subarachnoid hemorrhage, as well as to improve the cognitive decline seen in stroke patients. It has been found to be effective for the treatment of pulmonary hypertension. It has been demonstrated that fasudil could improve memory in normal mice, identifying the drug as a possible treatment for age-related or neurodegenerative memory loss.

Richard I. Morimoto is a Japanese American molecular biologist. He is the Bill and Gayle Cook Professor of Biology and Director of the Rice Institute for Biomedical Research at Northwestern University.

Messenger RNP is mRNA with bound proteins. mRNA does not exist "naked" in vivo but is always bound by various proteins while being synthesized, spliced, exported, and translated in the cytoplasm.

Primary age-related tauopathy (PART) is a neuropathological designation introduced in 2014 to describe the neurofibrillary tangles (NFT) that are commonly observed in the brains of normally aged and cognitively impaired individuals that can occur independently of the amyloid plaques of Alzheimer's disease (AD). The term and diagnostic criteria for PART were developed by a large group of neuropathologists, spearheaded by Drs. John F. Crary and Peter T. Nelson. Despite some controversy, the term PART has been widely adopted, with the consensus criteria cited over 1130 times as of April 2023 according to Google Scholar.

<span class="mw-page-title-main">FASTKD5</span> Protein-coding gene in the species Homo sapiens

FAST kinase domain-containing protein 5 (FASTKD5) is a protein that in humans is encoded by the FASTKD5 gene on chromosome 20. This protein is part of the FASTKD family, which is known for regulating the energy balance of mitochondria under stress. FASTKD5 is also required for RNA granules to process precursor mRNAs not flanked by tRNAs.

<span class="mw-page-title-main">Tara Spires-Jones</span> Professor of Neurodegeneration

Tara Spires-Jones is professor of neurodegeneration and Director of the Centre for Discovery Brain Sciences at the University of Edinburgh.

Chaperome refers to the ensemble of all cellular molecular chaperone and co-chaperone proteins that assist protein folding of misfolded proteins or folding intermediates in order to ensure native protein folding and function, to antagonize aggregation-related proteotoxicity and ensuing protein loss-of-function or protein misfolding-diseases such as the neurodegenerative diseases Alzheimer's, Huntington's or Parkinson's disease, as well as to safeguard cellular proteostasis and proteome balance.

References

  1. https://archive.storycorps.org/interviews/nelly-murstein-and-benjamin-wolozin/
  2. https://www.bumc.bu.edu/camed/profile/benjamin-wolozin/
  3. https://www.bumc.bu.edu/ppb/people/faculty/faculty-profiles/wolozin/
  4. "Benjamin Wolozin". aaas.org. Archived from the original on April 25, 2017. Retrieved April 24, 2017.
  5. "Benjamin Wolozin". bu.edu. Archived from the original on April 26, 2017. Retrieved April 24, 2017.
  6. https://www.linkedin.com/in/benjamin-wolozin-6534a214/
  7. https://www.bumc.bu.edu/camed/profile/benjamin-wolozin/
  8. https://profiles.bu.edu/Benjamin.Wolozin
  9. Wolozin, B. L.; Pruchnicki, A.; Dickson, D. W.; Davies, P. (1986-05-02). "A neuronal antigen in the brains of Alzheimer patients". Science. 232 (4750): 648–650. Bibcode:1986Sci...232..648W. doi:10.1126/science.3083509. ISSN   0036-8075. PMID   3083509.
  10. Wolozin, B.; Kellman, W.; Ruosseau, P.; Celesia, G. G.; Siegel, G. (2000-10-01). "Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methyglutaryl coenzyme A reductase inhibitors". Archives of Neurology. 57 (10): 1439–1443. doi: 10.1001/archneur.57.10.1439 . ISSN   0003-9942. PMID   11030795.
  11. Maziuk, Brandon; Ballance, Heather I.; Wolozin, Benjamin (2017). "Dysregulation of RNA Binding Protein Aggregation in Neurodegenerative Disorders". Frontiers in Molecular Neuroscience. 10: 89. doi: 10.3389/fnmol.2017.00089 . PMC   5378767 . PMID   28420962.
  12. Panas, Marc D.; Ivanov, Pavel; Anderson, Paul (2016-11-07). "Mechanistic insights into mammalian stress granule dynamics". The Journal of Cell Biology. 215 (3): 313–323. doi:10.1083/jcb.201609081. ISSN   1540-8140. PMC   5100297 . PMID   27821493.
  13. Liu-Yesucevitz, Liqun; Bilgutay, Aylin; Zhang, Yong-Jie; Vanderwyde, Tara; Citro, Allison; Mehta, Tapan; Zaarur, Nava; McKee, Ann; Bowser, Robert (2010-10-11). "Tar DNA Binding Protein-43 (TDP-43) Associates with Stress Granules: Analysis of Cultured Cells and Pathological Brain Tissue". PLOS ONE. 5 (10): e13250. Bibcode:2010PLoSO...513250L. doi: 10.1371/journal.pone.0013250 . ISSN   1932-6203. PMC   2952586 . PMID   20948999.
  14. Alberti, Simon; Mateju, Daniel; Mediani, Laura; Carra, Serena (2017). "Granulostasis: Protein Quality Control of RNP Granules". Frontiers in Molecular Neuroscience. 10: 84. doi: 10.3389/fnmol.2017.00084 . PMC   5367262 . PMID   28396624.
  15. Vanderweyde, Tara; Yu, Haung; Varnum, Megan; Liu-Yesucevitz, Liqun; Citro, Allison; Ikezu, Tsuneya; Duff, Karen; Wolozin, Benjamin (2012-06-13). "Contrasting Pathology of the Stress Granule Proteins TIA-1 and G3BP in Tauopathies". The Journal of Neuroscience. 32 (24): 8270–8283. doi:10.1523/JNEUROSCI.1592-12.2012. ISSN   0270-6474. PMC   3402380 . PMID   22699908.
  16. Vanderweyde, Tara; Apicco, Daniel J.; Youmans-Kidder, Katherine; Ash, Peter E. A.; Cook, Casey; Lummertz da Rocha, Edroaldo; Jansen-West, Karen; Frame, Alissa A.; Citro, Allison (2016-05-17). "Interaction of tau with the RNA-Binding Protein TIA1 Regulates tau Pathophysiology and Toxicity". Cell Reports. 15 (7): 1455–1466. doi:10.1016/j.celrep.2016.04.045. ISSN   2211-1247. PMC   5325702 . PMID   27160897.
  17. Vanderweyde, Tara; Yu, Haung; Varnum, Megan; Liu-Yesucevitz, Liqun; Citro, Allison; Ikezu, Tsuneya; Duff, Karen; Wolozin, Benjamin (2012-06-13). "Contrasting Pathology of the Stress Granule Proteins TIA-1 and G3BP in Tauopathies". The Journal of Neuroscience. 32 (24): 8270–8283. doi:10.1523/JNEUROSCI.1592-12.2012. ISSN   0270-6474. PMC   3402380 . PMID   22699908.
  18. Vanderweyde, Tara; Apicco, Daniel J.; Youmans-Kidder, Katherine; Ash, Peter E. A.; Cook, Casey; Lummertz da Rocha, Edroaldo; Jansen-West, Karen; Frame, Alissa A.; Citro, Allison (2016-05-17). "Interaction of tau with the RNA-Binding Protein TIA1 Regulates tau Pathophysiology and Toxicity". Cell Reports. 15 (7): 1455–1466. doi:10.1016/j.celrep.2016.04.045. ISSN   2211-1247. PMC   5325702 . PMID   27160897.
  19. Vanderweyde, Tara; Apicco, Daniel J.; Youmans-Kidder, Katherine; Ash, Peter E. A.; Cook, Casey; Lummertz da Rocha, Edroaldo; Jansen-West, Karen; Frame, Alissa A.; Citro, Allison (2016-05-17). "Interaction of tau with the RNA-Binding Protein TIA1 Regulates tau Pathophysiology and Toxicity". Cell Reports. 15 (7): 1455–1466. doi:10.1016/j.celrep.2016.04.045. ISSN   2211-1247. PMC   5325702 . PMID   27160897.
  20. Vanderweyde, Tara; Apicco, Daniel J.; Youmans-Kidder, Katherine; Ash, Peter E. A.; Cook, Casey; Lummertz da Rocha, Edroaldo; Jansen-West, Karen; Frame, Alissa A.; Citro, Allison (2016-05-17). "Interaction of tau with the RNA-Binding Protein TIA1 Regulates tau Pathophysiology and Toxicity". Cell Reports. 15 (7): 1455–1466. doi:10.1016/j.celrep.2016.04.045. ISSN   2211-1247. PMC   5325702 . PMID   27160897.
  21. https://www.aquinnahpharma.com/team
  22. Ravid, Katya; Wolozin, Benjamin (2013-06-01). "The Scientist's Pledge". Academic Medicine. 88 (6): 743. doi:10.1097/ACM.0b013e31828f9f96. ISSN   1938-808X. PMC   3910371 . PMID   23708595.