Beta wavelet

Last updated

Continuous wavelets of compact support alpha can be built, [1] which are related to the beta distribution. The process is derived from probability distributions using blur derivative. These new wavelets have just one cycle, so they are termed unicycle wavelets. They can be viewed as a soft variety of Haar wavelets whose shape is fine-tuned by two parameters and . Closed-form expressions for beta wavelets and scale functions as well as their spectra are derived. Their importance is due to the Central Limit Theorem by Gnedenko and Kolmogorov applied for compactly supported signals. [2]

Contents

Beta distribution

The beta distribution is a continuous probability distribution defined over the interval . It is characterised by a couple of parameters, namely and according to:

.

The normalising factor is ,

where is the generalised factorial function of Euler and is the Beta function. [3]

Gnedenko-Kolmogorov central limit theorem revisited

Let be a probability density of the random variable , i.e.

, and .

Suppose that all variables are independent.

The mean and the variance of a given random variable are, respectively

.

The mean and variance of are therefore and .

The density of the random variable corresponding to the sum is given by the

Central Limit Theorem for distributions of compact support (Gnedenko and Kolmogorov). [2]

Let be distributions such that .

Let , and .

Without loss of generality assume that and .

The random variable holds, as ,

where and

Beta wavelets

Since is unimodal, the wavelet generated by

has only one-cycle (a negative half-cycle and a positive half-cycle).

The main features of beta wavelets of parameters and are:

The parameter is referred to as “cyclic balance”, and is defined as the ratio between the lengths of the causal and non-causal piece of the wavelet. The instant of transition from the first to the second half cycle is given by

The (unimodal) scale function associated with the wavelets is given by

.

A closed-form expression for first-order beta wavelets can easily be derived. Within their support,

Figure. Unicyclic beta scale function and wavelet for different parameters: a)
a
=
4
{\displaystyle \alpha =4}
,
b
=
3
{\displaystyle \beta =3}
b)
a
=
3
{\displaystyle \alpha =3}
,
b
=
7
{\displaystyle \beta =7}
c)
a
=
5
{\displaystyle \alpha =5}
,
b
=
17
{\displaystyle \beta =17}
. Beta scale and wavelet.jpg
Figure. Unicyclic beta scale function and wavelet for different parameters: a) , b) , c) , .

Beta wavelet spectrum

The beta wavelet spectrum can be derived in terms of the Kummer hypergeometric function. [4]

Let denote the Fourier transform pair associated with the wavelet.

This spectrum is also denoted by for short. It can be proved by applying properties of the Fourier transform that

where .

Only symmetrical cases have zeroes in the spectrum. A few asymmetric beta wavelets are shown in Fig. Inquisitively, they are parameter-symmetrical in the sense that they hold

Higher derivatives may also generate further beta wavelets. Higher order beta wavelets are defined by

This is henceforth referred to as an -order beta wavelet. They exist for order . After some algebraic handling, their closed-form expression can be found:

Figure. Magnitude of the spectrum
Ps
B
E
T
A
(
o
)
{\displaystyle \Psi _{BETA}(\omega )}
of beta wavelets,
|
Ps
B
E
T
A
(
o
a
,
b
)
|
{\displaystyle |\Psi _{BETA}(\omega \alpha ,\beta )|}
x
o
{\displaystyle \times \omega }
for Symmetric beta wavelet
a
=
b
=
3
{\displaystyle \alpha =\beta =3}
,
a
=
b
=
4
{\displaystyle \alpha =\beta =4}
,
a
=
b
=
5
{\displaystyle \alpha =\beta =5} Fig1a.jpg
Figure. Magnitude of the spectrum of beta wavelets, for Symmetric beta wavelet , ,
Figure. Magnitude of the spectrum
Ps
B
E
T
A
(
o
)
{\displaystyle \Psi _{BETA}(\omega )}
of beta wavelets,
|
Ps
B
E
T
A
(
o
a
,
b
)
|
{\displaystyle |\Psi _{BETA}(\omega \alpha ,\beta )|}
x
o
{\displaystyle \times \omega }
for: Asymmetric beta wavelet
a
=
3
{\displaystyle \alpha =3}
,
b
=
4
{\displaystyle \beta =4}
,
a
=
3
{\displaystyle \alpha =3}
,
b
=
5
{\displaystyle \beta =5}
. Fig1b.jpg
Figure. Magnitude of the spectrum of beta wavelets, for: Asymmetric beta wavelet , , , .

Application

Wavelet theory is applicable to several subjects. All wavelet transforms may be considered forms of time-frequency representation for continuous-time (analog) signals and so are related to harmonic analysis. Almost all practically useful discrete wavelet transforms use discrete-time filter banks. Similarly, Beta wavelet [1] [5] and its derivative are utilized in several real-time engineering applications such as image compression, [5] bio-medical signal compression, [6] [7] image recognition [9] [8] etc.

Related Research Articles

In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-12 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way.

<span class="mw-page-title-main">Beta distribution</span> Probability distribution

In probability theory and statistics, the beta distribution is a family of continuous probability distributions defined on the interval [0, 1] in terms of two positive parameters, denoted by alpha (α) and beta (β), that appear as exponents of the variable and its complement to 1, respectively, and control the shape of the distribution.

<span class="mw-page-title-main">Beta function</span>

In mathematics, the beta function, also called the Euler integral of the first kind, is a special function that is closely related to the gamma function and to binomial coefficients. It is defined by the integral

In physics, the S-matrix or scattering matrix relates the initial state and the final state of a physical system undergoing a scattering process. It is used in quantum mechanics, scattering theory and quantum field theory (QFT).

In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics. The Hamilton–Jacobi equation is particularly useful in identifying conserved quantities for mechanical systems, which may be possible even when the mechanical problem itself cannot be solved completely.

<span class="mw-page-title-main">LSZ reduction formula</span> Connection between correlation functions and the S-matrix

In quantum field theory, the LSZ reduction formula is a method to calculate S-matrix elements from the time-ordered correlation functions of a quantum field theory. It is a step of the path that starts from the Lagrangian of some quantum field theory and leads to prediction of measurable quantities. It is named after the three German physicists Harry Lehmann, Kurt Symanzik and Wolfhart Zimmermann.

In differential geometry, the four-gradient is the four-vector analogue of the gradient from vector calculus.

The Havriliak–Negami relaxation is an empirical modification of the Debye relaxation model in electromagnetism. Unlike the Debye model, the Havriliak–Negami relaxation accounts for the asymmetry and broadness of the dielectric dispersion curve. The model was first used to describe the dielectric relaxation of some polymers, by adding two exponential parameters to the Debye equation:

In mathematics, the Fubini–Study metric is a Kähler metric on projective Hilbert space, that is, on a complex projective space CPn endowed with a Hermitian form. This metric was originally described in 1904 and 1905 by Guido Fubini and Eduard Study.

<span class="mw-page-title-main">Duffing equation</span> Non-linear second order differential equation and its attractor

The Duffing equation, named after Georg Duffing (1861–1944), is a non-linear second-order differential equation used to model certain damped and driven oscillators. The equation is given by

Scalar–tensor–vector gravity (STVG) is a modified theory of gravity developed by John Moffat, a researcher at the Perimeter Institute for Theoretical Physics in Waterloo, Ontario. The theory is also often referred to by the acronym MOG.

The time-evolving block decimation (TEBD) algorithm is a numerical scheme used to simulate one-dimensional quantum many-body systems, characterized by at most nearest-neighbour interactions. It is dubbed Time-evolving Block Decimation because it dynamically identifies the relevant low-dimensional Hilbert subspaces of an exponentially larger original Hilbert space. The algorithm, based on the Matrix Product States formalism, is highly efficient when the amount of entanglement in the system is limited, a requirement fulfilled by a large class of quantum many-body systems in one dimension.

In many-body theory, the term Green's function is sometimes used interchangeably with correlation function, but refers specifically to correlators of field operators or creation and annihilation operators.

In mathematics, the Schur orthogonality relations, which were proven by Issai Schur through Schur's lemma, express a central fact about representations of finite groups. They admit a generalization to the case of compact groups in general, and in particular compact Lie groups, such as the rotation group SO(3).

<span class="mw-page-title-main">Half-normal distribution</span> Probability distribution

In probability theory and statistics, the half-normal distribution is a special case of the folded normal distribution.

In mathematical logic and set theory, an ordinal collapsing function is a technique for defining certain recursive large countable ordinals, whose principle is to give names to certain ordinals much larger than the one being defined, perhaps even large cardinals, and then "collapse" them down to a system of notations for the sought-after ordinal. For this reason, ordinal collapsing functions are described as an impredicative manner of naming ordinals.

The Kapitza–Dirac effect is a quantum mechanical effect consisting of the diffraction of matter by a standing wave of light. The effect was first predicted as the diffraction of electrons from a standing wave of light by Paul Dirac and Pyotr Kapitsa in 1933. The effect relies on the wave–particle duality of matter as stated by the de Broglie hypothesis in 1924.

An LC circuit can be quantized using the same methods as for the quantum harmonic oscillator. An LC circuit is a variety of resonant circuit, and consists of an inductor, represented by the letter L, and a capacitor, represented by the letter C. When connected together, an electric current can alternate between them at the circuit's resonant frequency:

Buchholz's psi-functions are a hierarchy of single-argument ordinal functions introduced by German mathematician Wilfried Buchholz in 1986. These functions are a simplified version of the -functions, but nevertheless have the same strength as those. Later on this approach was extended by Jaiger and Schütte.

Tau functions are an important ingredient in the modern theory of integrable systems, and have numerous applications in a variety of other domains. They were originally introduced by Ryogo Hirota in his direct method approach to soliton equations, based on expressing them in an equivalent bilinear form. The term Tau function, or -function, was first used systematically by Mikio Sato and his students in the specific context of the Kadomtsev–Petviashvili equation, and related integrable hierarchies. It is a central ingredient in the theory of solitons. Tau functions also appear as matrix model partition functions in the spectral theory of Random Matrices, and may also serve as generating functions, in the sense of combinatorics and enumerative geometry, especially in relation to moduli spaces of Riemann surfaces, and enumeration of branched coverings, or so-called Hurwitz numbers.

References

  1. 1 2 de Oliveira, Hélio Magalhães; Schmidt, Giovanna Angelis (2005). "Compactly Supported One-cyclic Wavelets Derived from Beta Distributions". Journal of Communication and Information Systems. 20 (3): 27–33. doi: 10.14209/jcis.2005.17 .
  2. 1 2 Gnedenko, Boris Vladimirovich; Kolmogorov, Andrey (1954). Limit Distributions for Sums of Independent Random Variables. Reading, Ma: Addison-Wesley.
  3. Davis, Philip J. (1968). "Gamma Function and Related Functions". In Abramowitz, Milton; Stegun, Irene (eds.). Handbook of Mathematical Functions. New York: Dover. pp. 253–294. ISBN   0-486-61272-4.
  4. Slater, Lucy Joan (1968). "Confluent Hypergeometric Function". In Abramowitz, Milton; Stegun, Irene (eds.). Handbook of Mathematical Functions. New York: Dover. pp. 503–536. ISBN   0-486-61272-4.
  5. 1 2 Ben Amar, Chokri; Zaied, Mourad; Alimi, Adel M. (2005). "Beta wavelets. Synthesis and application to lossy image compression". Advances in Engineering Software. Elsevier. 36 (7): 459–474. doi:10.1016/j.advengsoft.2005.01.013.
  6. Kumar, Ranjeet; Kumar, Anil; Pandey, Rajesh K. (2012). "Electrocardiogram Signal compression Using Beta Wavelets". Journal of Mathematical Modelling and Algorithms. Springer Verlag. 11 (3): 235–248. doi:10.1007/s10852-012-9181-9. S2CID   4667379.
  7. Kumar, Ranjeet; Kumar, Anil; Pandey, Rajesh K. (2013). "Beta wavelet based ECG signal compression using lossless encoding with modified thresholding". Computers & Electrical Engineering. Elsevier. 39 (1): 130–140. doi:10.1016/j.compeleceng.2012.04.008.
  8. Zaied, Mourad; Jemai, Olfa; Ben Amar, Chokri (2008). "Training of the Beta wavelet networks by the frames theory: Application to face recognition". 2008 First Workshops on Image Processing Theory, Tools and Applications. IEEE. pp. 1–6. doi:10.1109/IPTA.2008.4743756. eISSN   2154-512X. ISBN   978-1-4244-3321-6. ISSN   2154-5111. S2CID   12230926.

Further reading