Bhargava factorial

Last updated

In mathematics, Bhargava's factorial function, or simply Bhargava factorial, is a certain generalization of the factorial function developed by the Fields Medal winning mathematician Manjul Bhargava as part of his thesis in Harvard University in 1996. The Bhargava factorial has the property that many number-theoretic results involving the ordinary factorials remain true even when the factorials are replaced by the Bhargava factorials. Using an arbitrary infinite subset S of the set of integers, Bhargava associated a positive integer with every positive integer k, which he denoted by k !S, with the property that if one takes S = itself, then the integer associated with k, that is k !, would turn out to be the ordinary factorial of k. [1]

Contents

Motivation for the generalization

The factorial of a non-negative integer n, denoted by n!, is the product of all positive integers less than or equal to n. For example, 5! = 5×4×3×2×1 = 120. By convention, the value of 0! is defined as 1. This classical factorial function appears prominently in many theorems in number theory. The following are a few of these theorems. [1]

  1. For any positive integers m and n, (m + n)! is a multiple of m! n!.
  2. Let f(x) be a primitive integer polynomial, that is, a polynomial in which the coefficients are integers and are relatively prime to each other. If the degree of f(x) is k then the greatest common divisor of the set of values of f(x) for integer values of x is a divisor of k!.
  3. Let a0, a1, a2, , an be any n + 1 integers. Then the product of their pairwise differences is a multiple of 0! 1! n!.
  4. Let be the set of integers and n any integer. Then the number of polynomial functions from the ring of integers to the quotient ring is given by .

Bhargava posed to himself the following problem and obtained an affirmative answer: In the above theorems, can one replace the set of integers by some other set S (a subset of , or a subset of some ring) and define a function depending on S which assigns a value to each non-negative integer k, denoted by k!S, such that the statements obtained from the theorems given earlier by replacing k! by k!S remain true?

The generalisation

  1. a0 is any arbitrary element of S.
  2. a1 is any arbitrary element of S such that the highest power of p that divides a1  a0 is minimum.
  3. a2 is any arbitrary element of S such that the highest power of p that divides (a2  a0)(a2  a1) is minimum.
  4. a3 is any arbitrary element of S such that the highest power of p that divides (a3  a0)(a3  a1)(a3  a2) is minimum.
  5. and so on.

Example: Factorials using set of prime numbers

Let S be the set of all prime numbers P = {2, 3, 5, 7, 11, }.

  • Choose p = 2 and form a p-ordering of P.
  • Choose a0 = 19 arbitrarily from P.
  • To choose a1:
  • The highest power of p that divides 2  a0 = −17 is 20 = 1. Also, for any a ≠ 2 in P, a  a0 is divisible by 2. Hence, the highest power of p that divides (a1  a0) is minimum when a1 = 2 and the minimum power is 1. Thus a1 is chosen as 2 and v1(P, 2) = 1.
  • To choose a2:
  • It can be seen that for each element a in P, the product x = (a  a0)(a  a1) = (a  19)(a  2) is divisible by 2. Also, when a = 5, x is divisible 2 and it is not divisible by any higher power of 2. So, a2 may be chosen as 5. We have v2(P, 2) = 2.
  • To choose a3:
  • It can be seen that for each element a in P, the product x = (a  a0)(a  a1)(a  a2) = (a  19)(a  2)(a  5) is divisible by 23 = 8. Also, when a = 17, x is divisible by 8 and it is not divisible by any higher power of 2. Choose a3 = 17. Also we have v3(P,2) = 8.
  • To choose a4:
  • It can be seen that for each element a in P, the product x = (a  a0)(a  a1)(a  a2)(a  a3) = (a  19)(a  2)(a  5)(a  17) is divisible by 24 = 16. Also, when a = 23, x is divisible 16 and it is not divisible by any higher power of 2. Choose a4 = 23. Also we have v4(P,2) = 16.
  • To choose a5:
  • It can be seen that for each element a in P, the product x = (a  a0)(a  a1)(a  a2)(a  a3)(a  a4) = (a  19)(a  2)(a  5)(a  17)(a  23) is divisible by 27 = 128. Also, when a = 31, x is divisible 128 and it is not divisible by any higher power of 2. Choose a5 = 31. Also we have v5(P,2) = 128.
  • The process is continued. Thus a 2-ordering of P is {19, 2, 5, 17, 23, 31, } and the associated 2-sequence is {1, 1, 2, 8, 16, 128, }, assuming that v0(P, 2) = 1.
  • For p = 3, one possible p-ordering of P is the sequence {2, 3, 7, 5, 13, 17, 19, } and the associated p-sequence of P is {1, 1, 1, 3, 3, 9, }.
  • For p = 5, one possible p-ordering of P is the sequence {2, 3, 5, 19, 11, 7, 13, } and the associated p-sequence is {1, 1, 1, 1, 1, 5, }.
  • It can be shown that for p ≥ 7, the first few elements of the associated p-sequences are {1, 1, 1, 1, 1, 1, }.


The first few factorials associated with the set of prime numbers are obtained as follows (sequence A053657 in the OEIS ).

Table of values of vk(P, p) and k!P

p
k
235711k!P
0111111×1×1×1×1× =1
1111111×1×1×1×1× =1
2211112×1×1×1×1× =2
3831118×3×1×1×1× =24
416311116×3×1×1×1× =48
51289511128×9×5×1×1× =5760
62569511256×9×5×1×1× =11520

Example: Factorials using the set of natural numbers

Let S be the set of natural numbers .

  • For p = 2, the associated p-sequence is {1, 1, 2, 2, 8, 8, 16, 16, 128, 128, 256, 256, }.
  • For p = 3, the associated p-sequence is {1, 1, 1, 3, 3, 3, 9, 9, 9, 27, 27, 27, 81, 81, 81, }.
  • For p = 5, the associated p-sequence is {1, 1, 1, 1, 1, 5, 5, 5, 5, 5, 25, 25, 25, 25, 25, }.
  • For p = 7, the associated p-sequence is {1, 1, 1, 1, 1, 1, 1, 7, 7, 7, 7, 7, 7, 7, }.
  • and so on.

Thus the first few factorials using the natural numbers are

  • 0! = 1×1×1×1×1× = 1.
  • 1! = 1×1×1×1×1× = 1.
  • 2! = 2×1×1×1×1× = 2.
  • 3! = 2×3×1×1×1× = 6.
  • 4! = 8×3×1×1×1× = 24.
  • 5! = 8×3×5×1×1× = 120.
  • 6! = 16×9×5×1×1× = 720.

Examples: Some general expressions

The following table contains the general expressions for k!S for some special cases of S. [1]

Sl. No.Set Sk!S
1Set of natural numbersk!
2Set of even integers2k×k!
3Set of integers of the form an + bak×k!
4Set of integers of the form 2n(2k  1)(2k  2) (2k  2k  1)
5Set of integers of the form qn for some prime q(qk  1)(qk  q) (qk  qk  1)
6Set of squares of integers(2k)!/2

Related Research Articles

<span class="mw-page-title-main">Abelian group</span> Commutative group (mathematics)

In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commutative. With addition as an operation, the integers and the real numbers form abelian groups, and the concept of an abelian group may be viewed as a generalization of these examples. Abelian groups are named after early 19th century mathematician Niels Henrik Abel.

<span class="mw-page-title-main">Binomial coefficient</span> Number of subsets of a given size

In mathematics, the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem. Commonly, a binomial coefficient is indexed by a pair of integers nk ≥ 0 and is written It is the coefficient of the xk term in the polynomial expansion of the binomial power (1 + x)n; this coefficient can be computed by the multiplicative formula

In number theory, two integers a and b are coprime, relatively prime or mutually prime if the only positive integer that is a divisor of both of them is 1. Consequently, any prime number that divides a does not divide b, and vice versa. This is equivalent to their greatest common divisor (GCD) being 1. One says also ais prime tob or ais coprime withb.

In mathematics, the factorial of a non-negative integer , denoted by , is the product of all positive integers less than or equal to . The factorial of also equals the product of with the next smaller factorial:

<span class="mw-page-title-main">Gamma function</span> Extension of the factorial function

In mathematics, the gamma function is one commonly used extension of the factorial function to complex numbers. The gamma function is defined for all complex numbers except the non-positive integers. For every positive integer n,

<span class="mw-page-title-main">Integral domain</span> Commutative ring with no zero divisors other than zero

In mathematics, specifically abstract algebra, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural setting for studying divisibility. In an integral domain, every nonzero element a has the cancellation property, that is, if a ≠ 0, an equality ab = ac implies b = c.

In mathematics, a principal ideal domain, or PID, is an integral domain in which every ideal is principal, i.e., can be generated by a single element. More generally, a principal ideal ring is a nonzero commutative ring whose ideals are principal, although some authors refer to PIDs as principal rings. The distinction is that a principal ideal ring may have zero divisors whereas a principal ideal domain cannot.

<span class="mw-page-title-main">Sequence</span> Finite or infinite ordered list of elements

In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members. The number of elements is called the length of the sequence. Unlike a set, the same elements can appear multiple times at different positions in a sequence, and unlike a set, the order does matter. Formally, a sequence can be defined as a function from natural numbers to the elements at each position. The notion of a sequence can be generalized to an indexed family, defined as a function from an arbitrary index set.

<span class="mw-page-title-main">Ring (mathematics)</span> Algebraic structure with addition and multiplication

In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. In other words, a ring is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series.

<span class="mw-page-title-main">Gaussian integer</span> Complex number whose real and imaginary parts are both integers

In number theory, a Gaussian integer is a complex number whose real and imaginary parts are both integers. The Gaussian integers, with ordinary addition and multiplication of complex numbers, form an integral domain, usually written as or

<i>p</i>-adic number Number system for a prime p which extends the rationals, defining closeness differently

In mathematics, the p-adic number system for any prime number p extends the ordinary arithmetic of the rational numbers in a different way from the extension of the rational number system to the real and complex number systems. The extension is achieved by an alternative interpretation of the concept of "closeness" or absolute value. In particular, two p-adic numbers are considered to be close when their difference is divisible by a high power of p: the higher the power, the closer they are. This property enables p-adic numbers to encode congruence information in a way that turns out to have powerful applications in number theory – including, for example, in the famous proof of Fermat's Last Theorem by Andrew Wiles.

In mathematics, a unique factorization domain (UFD) is a ring in which a statement analogous to the fundamental theorem of arithmetic holds. Specifically, a UFD is an integral domain in which every non-zero non-unit element can be written as a product of prime elements, uniquely up to order and units.

This article collects together a variety of proofs of Fermat's little theorem, which states that

In algebra and number theory, Wilson's theorem states that a natural number n > 1 is a prime number if and only if the product of all the positive integers less than n is one less than a multiple of n. That is, the factorial satisfies

In mathematics, a free abelian group is an abelian group with a basis. Being an abelian group means that it is a set with an addition operation that is associative, commutative, and invertible. A basis, also called an integral basis, is a subset such that every element of the group can be uniquely expressed as an integer combination of finitely many basis elements. For instance the two-dimensional integer lattice forms a free abelian group, with coordinatewise addition as its operation, and with the two points (1,0) and (0,1) as its basis. Free abelian groups have properties which make them similar to vector spaces, and may equivalently be called free-modules, the free modules over the integers. Lattice theory studies free abelian subgroups of real vector spaces. In algebraic topology, free abelian groups are used to define chain groups, and in algebraic geometry they are used to define divisors.

In mathematics, specifically order theory, a well-quasi-ordering or wqo on a set is a quasi-ordering of for which every infinite sequence of elements from contains an increasing pair with

Multiplicative group of integers modulo <i>n</i> Group of units of the ring of integers modulo n

In modular arithmetic, the integers coprime to n from the set of n non-negative integers form a group under multiplication modulo n, called the multiplicative group of integers modulo n. Equivalently, the elements of this group can be thought of as the congruence classes, also known as residues modulo n, that are coprime to n. Hence another name is the group of primitive residue classes modulo n. In the theory of rings, a branch of abstract algebra, it is described as the group of units of the ring of integers modulo n. Here units refers to elements with a multiplicative inverse, which, in this ring, are exactly those coprime to n.

In mathematics, a Witt vector is an infinite sequence of elements of a commutative ring. Ernst Witt showed how to put a ring structure on the set of Witt vectors, in such a way that the ring of Witt vectors over the finite field of order is isomorphic to , the ring of -adic integers. They have a highly non-intuitive structure upon first glance because their additive and multiplicative structure depends on an infinite set of recursive formulas which do not behave like addition and multiplication formulas for standard p-adic integers.

<span class="mw-page-title-main">Algebraic number field</span> Finite degree (and hence algebraic) field extension of the field of rational numbers

In mathematics, an algebraic number field is an extension field of the field of rational numbers such that the field extension has finite degree . Thus is a field that contains and has finite dimension when considered as a vector space over .

In mathematics, a profinite integer is an element of the ring

References

  1. 1 2 3 Bhargava, Manjul (2000). "The Factorial Function and Generalizations" (PDF). The American Mathematical Monthly. 107 (9): 783–799. CiteSeerX   10.1.1.585.2265 . doi:10.2307/2695734. JSTOR   2695734.