Bidirectional Glenn procedure

Last updated
Bidirectional Glenn procedure
Bidirectional Glenn hand drawn.png
Bidirectional Glenn. Cavopulmonary anastomosis is created connecting the SVC to the right pulmonary artery. Any previous supply to the PAs, such as a Norwood-procedure shunt, is removed.
Other namesbidirectional cavopulmonary anastomosis, hemi-Fontan
Specialty Cardiothoracic surgery
Hypoplastic left heart syndrome (HLHS), which often requires the bidirectional Glenn as part of its three part palliation procedure Hypoplastic left heart syndrome.svg
Hypoplastic left heart syndrome (HLHS), which often requires the bidirectional Glenn as part of its three part palliation procedure
An HLHS heart's blood flow after Norwood procedure, i.e. the stage before a BDG shunt Norwood Surgical Correction (cutaway only).png
An HLHS heart's blood flow after Norwood procedure, i.e. the stage before a BDG shunt

The bidirectional Glenn (BDG) shunt , or bidirectional cavopulmonary anastomosis, is a surgical technique used in pediatric cardiac surgery procedure used to temporarily improve blood oxygenation for patients with a congenital cardiac defect resulting in a single functional ventricle. Creation of a bidirectional shunt reduces the amount of blood volume that the heart needs to pump at the time of surgical repair with the Fontan procedure.

Contents

Uses

Physiology

The human circulatory system uses a low-resistance pulmonary circulation and high-resistance systemic circulation to pump blood. In a single-ventricle heart, the sole functioning ventricle must pump blood to both the lungs and the organ systems. As a result, this is an abnormal parallel circuit where the pulmonary and systemic blood mixes such that both oxygenated and deoxygenated blood are pumped to the organs. [1] The aim of the bidirectional Glenn shunt is to improve oxygenation and reduce the load on the single functioning ventricle while the patient is prepared for definitive surgical correction through separation of the pulmonary and systemic circuits. [2] The BDG shunt is also called a "hemi-Fontan" procedure because it is the physiologic equivalent of half a functioning Fontan shunt. [1]

Univentricular congenital cardiac malformations

The incidence of univentricular heart malformations is estimated at 0.1 to 0.4 per 1,000 live births. [3] In the neonatal period, these patients depend on an aortopulmonary shunt that is maintained medically with prostaglandin and then surgically with an initial cardiac shunt procedure. As the patient will outgrow the shunt with time, they are evaluated for the Glenn bidirectional shunt when oxygen saturation begins to fall. The Glenn procedure is typically performed at 4 to 6 months of age for infants born with congenital single ventricle defects. These patients typically require a Fontan procedure at 18 to 36 months of age following the Glenn BDG procedure.

Examples of congenital cardiac malformations in which this procedure may be used include hypoplastic left heart syndrome, tricuspid atresia, double-inlet left ventricle and double-outlet right ventricle. [3] The natural history of congenital univentricular cardiac malformations results in cyanotic heart failure at an early age. Staged palliation through the BDG shunt and Fontan procedure has allowed these patients to live into adulthood. [4]

Contraindications

The circulation of a patient after BDG shunt placement requires adequate systemic venous return to support pulmonary blood flow. However, pulmonary blood flow, and thus oxygenation, is inhibited by high pressures or valvular obstructions. [1]

Pulmonary hypertension (moderate to severe) is a relative contraindication to the bidirectional Glenn. [5] This is because pulmonary vascular resistance is too elevated to allow sufficient oxygenation. [5] In physiologic parameters, this includes elevated pulmonary vascular resistance, stiff ventricle tissue, and dysfunction of the atrio-ventricular valve. In patients with hypoplastic left heart syndrome, obstruction of blood flow at the atrial septum should be examined and corrected. [1]

Risks and complications

The mechanism of many of the risks and complications related to failure of the Glenn bidirectional shunt is thought to be thrombosis. Right-side dominant circulation, elevated pulmonary vascular resistance, and prolonged operative and recovery time are the major factors that increase the risk of complications and failure.

Approximately 30% of patients experience postoperative complications. The National Pediatric Cardiology Quality Improvement Collaborative registry published data in 2013, demonstrating emergency cardiac catherization, new neurologic deficit, reoperation, cardiac arrest, and feeding difficulties requiring procedural intervention as the most common complications. [6] Prolonged cardiopulmonary bypass time, elevated central venous pressure (CVP) or pulmonary arterial pressure, and specific malformations including unbalanced atrioventricular septal defect or surgical history of total anomalous pulmonary venous connection repair were established as risk factors for worse outcomes. [7]

Following the bidirectional Glenn shunt, failure of the procedure can be broadly categorized as failure of procedure, cardiac dysfunction related to surgery, or cardiac dysfunction leading to death before further surgical intervention. [8] Retrospective reviews demonstrate failure of the procedure in 6.5% of patients. Reported mortality related to the BDG procedure ranges from 0.7% to 2.4%, however up to 71% of patients may die once the BDG shunt fails, with many decompensating before further surgery can be performed. In current research, early additional intervention is a promising direction to improve future outcomes. Predictors of failed procedure include right ventricle dominance, prolonged pleural drainage, and prolonged stay in the ICU/hospital or need for use of ECMO to maintain oxygenation. [7] [8] [9] [10]

Techniques

In the bidirectional Glenn shunt procedure, the surgical aim is to control pulmonary blood flow and volume load on the heart. This must be balanced with adequate oxygenation and systemic delivery of oxygenated blood. This modified circulatory system is established by detaching the superior vena cava from the right atrium and connecting the cranial part of the SVC to the pulmonary arteries (shunt). This is an example of a surgical anastomosis. As a result, the venous blood from the upper body enters the SVC and perfuses the pulmonary circulation as a low-pressure circuit, similar to a two-ventricle circulatory system. However, the remainder of systemic venous returns through the inferior vena cava continuing to mix with oxygenated blood returning from the pulmonary circuit. [4]

Rehabilitation

Patients are evaluated after surgery for cardiac and pulmonary function. Extracorporeal membrane oxygenation (ECMO) may be used post-operatively as a temporary measure in cases of cardiac dysfunction or severe pulmonary hypertension. Patients generally recover in intensive care for one week. [2]

For patients who continue to have cardiac dysfunction following surgical establishment of a Fontan circulation, heart transplantation is the only treatment option to restore cardiac function. [4]

History of the Glenn Procedure

Translational research using canine models in right heart bypass led to the creation of the Glenn bidirectional shunt. In 1956, the Meshalkin procedure was reported as a clinically successful superior cavo-pulmonary anastomosis in 21 children. [11] In 1958, William Glenn reported a successful superior vena cava to right pulmonary artery anastomosis (Glenn procedure) for tricuspid atresia in the New England Journal of Medicine. [12] The bidirectional Glenn is a modification where the SVC connects proximally to the bifurcation of the pulmonary arteries. [13] In modern use, the bidirectional Glenn shunt is the second stage, usually following the Norwood procedure and preceding the Fontan repair.

Society and culture

An estimated annual 1,000 Fontan procedures are performed annually in the United States, with an estimated 50,000 to 70,000 patients having completed the procedure as of 2018. [14] [15] In Europe, an estimated 25,000 patients have completed the Fontan procedure as of 2021. [4]

Other animals

Research on cardiac bypass in canine models paved the way for surgical procedures in humans. Rodbard and Wagner connected the right atrial appendage to the right pulmonary artery in an early report on this surgical technique. [16] Carlon et al reported the first superior cavo-pulmonary anastomosis between the right pulmonary artery and azygos vein, demonstrated an increase in pulmonary blood flow in dogs. [17] The Glenn group at Yale worked on several strategies to create anastomoses between the superior or inferior vena cavae to the right or main pulmonary arteries. These results showed a low survival rate in these canines, and further demonstrated the basis of many surgical complications including pleural effusions, ascites, and thrombosis. [12] In 1964, Haller introduced the bidirectional superior cavo-pulmonary shunt in 50 dogs with a superior vena cava to right pulmonary artery anastomosis with promising physiologic results. [18]

Related Research Articles

<span class="mw-page-title-main">Tetralogy of Fallot</span> Type of congenital heart defect

Tetralogy of Fallot (TOF), formerly known as Steno-Fallot tetralogy, is a congenital heart defect characterized by four specific cardiac defects. Classically, the four defects are:

<span class="mw-page-title-main">Atrial septal defect</span> Human heart defect present at birth

Atrial septal defect (ASD) is a congenital heart defect in which blood flows between the atria of the heart. Some flow is a normal condition both pre-birth and immediately post-birth via the foramen ovale; however, when this does not naturally close after birth it is referred to as a patent (open) foramen ovale (PFO). It is common in patients with a congenital atrial septal aneurysm (ASA).

A cyanotic heart defect is any congenital heart defect (CHD) that occurs due to deoxygenated blood bypassing the lungs and entering the systemic circulation, or a mixture of oxygenated and unoxygenated blood entering the systemic circulation. It is caused by structural defects of the heart such as right-to-left or bidirectional shunting, malposition of the great arteries, or any condition which increases pulmonary vascular resistance. The result may be the development of collateral circulation.

<span class="mw-page-title-main">Fontan procedure</span> Surgical procedure used in children with univentricular hearts

The Fontan procedure or Fontan–Kreutzer procedure is a palliative surgical procedure used in children with univentricular hearts. It involves diverting the venous blood from the inferior vena cava (IVC) and superior vena cava (SVC) to the pulmonary arteries. The procedure varies for differing congenital heart pathologies. For example in tricuspid atresia, the procedure can be done where the blood does not pass through the morphologic right ventricle; i.e., the systemic and pulmonary circulations are placed in series with the functional single ventricle. Whereas in hypoplastic left heart syndrome, the heart is more reliant on the more functional right ventricle to provide blood flow to the systemic circulation. The procedure was initially performed in 1968 by Francis Fontan and Eugene Baudet from Bordeaux, France, published in 1971, simultaneously described in 1971 by Guillermo Kreutzer from Buenos Aires, Argentina, and finally published in 1973.

<span class="mw-page-title-main">Blalock–Thomas–Taussig shunt</span> Cardiac surgery procedure

The Blalock–Thomas-Taussig shunt is a surgical procedure used to increase blood flow to the lungs in some forms of congenital heart disease such as pulmonary atresia and tetralogy of Fallot and are common causes of blue baby syndrome. The procedure involves connecting a branch of the subclavian artery or carotid artery to the pulmonary artery. In modern practice, this procedure is temporarily used to direct blood flow to the lungs and relieve cyanosis while the infant is waiting for corrective or definitive surgery when their heart is larger. The Blalock–Taussig shunt is used in the first step of the three-stage palliation.

Situs ambiguus is a rare congenital defect in which the major visceral organs are distributed abnormally within the chest and abdomen. Clinically heterotaxy spectrum generally refers to any defect of Left-right asymmetry and arrangement of the visceral organs; however, classical heterotaxy requires multiple organs to be affected. This does not include the congenital defect situs inversus, which results when arrangement of all the organs in the abdomen and chest are mirrored, so the positions are opposite the normal placement. Situs inversus is the mirror image of situs solitus, which is normal asymmetric distribution of the abdominothoracic visceral organs. Situs ambiguus can also be subdivided into left-isomerism and right isomerism based on the defects observed in the spleen, lungs and atria of the heart.

<span class="mw-page-title-main">Cardiac catheterization</span> Insertion of a catheter into a chamber or vessel of the heart

Cardiac catheterization is the insertion of a catheter into a chamber or vessel of the heart. This is done both for diagnostic and interventional purposes.

<span class="mw-page-title-main">Hypoplastic left heart syndrome</span> Type of congenital heart defect

Hypoplastic left heart syndrome (HLHS) is a rare congenital heart defect in which the left side of the heart is severely underdeveloped and incapable of supporting the systemic circulation. It is estimated to account for 2-3% of all congenital heart disease. Early signs and symptoms include poor feeding, cyanosis, and diminished pulse in the extremities. The etiology is believed to be multifactorial resulting from a combination of genetic mutations and defects resulting in altered blood flow in the heart. Several structures can be affected including the left ventricle, aorta, aortic valve, or mitral valve all resulting in decreased systemic blood flow.

<span class="mw-page-title-main">Transposition of the great vessels</span> Group of congenital heart defects

Transposition of the great vessels (TGV) is a group of congenital heart defects involving an abnormal spatial arrangement of any of the great vessels: superior and/or inferior venae cavae, pulmonary artery, pulmonary veins, and aorta. Congenital heart diseases involving only the primary arteries belong to a sub-group called transposition of the great arteries (TGA), which is considered the most common congenital heart lesion that presents in neonates.

<span class="mw-page-title-main">Pulmonary atresia</span> Medical condition

Pulmonary atresia is a congenital malformation of the pulmonary valve in which the valve orifice fails to develop. The valve is completely closed thereby obstructing the outflow of blood from the heart to the lungs. The pulmonary valve is located on the right side of the heart between the right ventricle and pulmonary artery. In a normal functioning heart, the opening to the pulmonary valve has three flaps that open and close.

<span class="mw-page-title-main">Tricuspid atresia</span> Medical condition

Tricuspid atresia is a form of congenital heart disease whereby there is a complete absence of the tricuspid valve. Therefore, there is an absence of right atrioventricular connection. This leads to a hypoplastic (undersized) or absent right ventricle. This defect is contracted during prenatal development, when the heart does not finish developing. It causes the systemic circulation to be filled with relatively deoxygenated blood. The causes of tricuspid atresia are unknown.

<span class="mw-page-title-main">Norwood procedure</span> Surgery performed on the heart

The Norwood procedure is the first of three surgeries intended to create a new functional systemic circuit in patients with hypoplastic left heart syndrome and other complex heart defects with single ventricle physiology. The first successful Norwood procedure involving the use of a cardiopulmonary bypass was reported by Dr. William Imon Norwood, Jr. and colleagues in 1981.

A cardiac shunt is a pattern of blood flow in the heart that deviates from the normal circuit of the circulatory system. It may be described as right-left, left-right or bidirectional, or as systemic-to-pulmonary or pulmonary-to-systemic. The direction may be controlled by left and/or right heart pressure, a biological or artificial heart valve or both. The presence of a shunt may also affect left and/or right heart pressure either beneficially or detrimentally.

<span class="mw-page-title-main">Double inlet left ventricle</span> Medical condition

A double inlet left ventricle (DILV) or "single ventricle", is a congenital heart defect appearing in 5 in 100,000 newborns, where both the left atrium and the right atrium feed into the left ventricle. The right ventricle is hypoplastic or does not exist.

The Kawashima procedure is used for congenital heart disease with a single effective ventricle and an interrupted inferior vena cava (IVC). It was first performed in 1978 and reported in 1984.

<span class="mw-page-title-main">Hypoplastic right heart syndrome</span> Type of congenital heart disease

Hypoplastic right heart syndrome is a congenital heart defect in which the structures on the right side of the heart, particularly the right ventricle, are underdeveloped. This defect causes inadequate blood flow to the lungs, and thus a cyanotic infant.

Glenn procedure is a palliative surgical procedure performed for patients with Tricuspid atresia. It is also part of the surgical treatment path for hypoplastic left heart syndrome. This procedure has been largely replaced by Bidirectional Glenn procedure.

The Senning procedure is an atrial switch heart operation performed to treat transposition of the great arteries. It is named after its inventor, the Swedish cardiac surgeon Åke Senning (1915–2000), also known for implanting the first permanent cardiac pacemaker in 1958.

<span class="mw-page-title-main">Francis Fontan</span> French cardiologist and surgeon

Francis Fontan was a French cardiologist and cardiothoracic surgeon best known for developing the Fontan procedure, a surgical procedure used to treat some forms of congenital heart disease.

Single ventricle is a rare congenital heart defect, which constitute just over 1% of congenital cardiovascular diseases. The single functional ventricle could be morphologically right or left with the second ventricle usually hypoplastic and/or insufficiently functional. Therefore, there are several subtypes of the disease, depending on which ventricle is underdeveloped.

References

  1. 1 2 3 4 Yuan, Shi-Min; Jing, Hua (June 2009). "Palliative procedures for congenital heart defects". Archives of Cardiovascular Diseases. 102 (6–7): 549–557. doi: 10.1016/j.acvd.2009.04.011 . ISSN   1875-2136. PMID   19664575.
  2. 1 2 "Bidirectional Glenn and hemi-Fontan procedures", Operative Cardiac Surgery (Sixth ed.), Boca Raton: CRC Press, pp. 502–511, 2018-09-03, doi:10.1201/9781351175975-58, ISBN   978-1-351-17597-5, S2CID   240283319 , retrieved 2022-02-08
  3. 1 2 Bakker, Marian K; Bergman, Jorieke E H; Krikov, Sergey; Amar, Emmanuelle; Cocchi, Guido; Cragan, Janet; de Walle, Hermien E K; Gatt, Miriam; Groisman, Boris; Liu, Shiliang; Nembhard, Wendy N (September 2019). "Prenatal diagnosis and prevalence of critical congenital heart defects: an international retrospective cohort study". BMJ Open. 9 (7): e028139. doi:10.1136/bmjopen-2018-028139. ISSN   2044-6055. PMC   6609145 . PMID   31270117.
  4. 1 2 3 4 Hedlund, Eva; Lundell, Bo (2021-07-23). "Fontan circulation has improved life expectancy for infants born with complex heart disease over the last 50 years but has also resulted in significant morbidity". Acta Paediatrica. 111 (1): 11–16. doi: 10.1111/apa.16023 . ISSN   0803-5253. PMID   34235784. S2CID   235768415.
  5. 1 2 Salik, Irim; Mehta, Bhupen; Ambati, Shashikanth (2022), "Bidirectional Glenn Procedure or Hemi-Fontan", StatPearls, Treasure Island (FL): StatPearls Publishing, PMID   33085446 , retrieved 2022-02-04
  6. Menon, Shaji C.; McCandless, Rachel T.; Mack, Gordon K.; Lambert, Linda M.; McFadden, Molly; Williams, Richard V.; Minich, L. LuAnn (2012-06-07). "Clinical Outcomes and Resource Use for Infants With Hypoplastic Left Heart Syndrome During Bidirectional Glenn: Summary From the Joint Council for Congenital Heart Disease National Pediatric Cardiology Quality Improvement Collaborative Registry". Pediatric Cardiology. 34 (1): 143–148. doi:10.1007/s00246-012-0403-8. ISSN   0172-0643. PMID   22673966. S2CID   25022449.
  7. 1 2 Raedi, Waheed; Fayyadh, Majid Al; Ahmadi, Momdouh Al; Alsoufi, Bahaa (April 2013). "Current outcomes of the Glenn bidirectional cavopulmonary connection for single ventricle palliation". Journal of the Saudi Heart Association. 25 (2): 170. doi: 10.1016/j.jsha.2013.03.176 . ISSN   1016-7315.
  8. 1 2 Greenberg, Jason W.; Pribble, Chase M.; Singareddy, Aashray; Ta, Ngoc-Anh; Sescleifer, Anne M.; Fiore, Andrew C.; Huddleston, Charles B. (November 2021). "The Failed Bidirectional Glenn Shunt: Risk Factors for Poor Outcomes and the Role of Early Reoperation". World Journal for Pediatric and Congenital Heart Surgery. 12 (6): 760–764. doi:10.1177/21501351211044129. ISSN   2150-1351. PMID   34846973. S2CID   244783658.
  9. Qiao, Bin; Wang, Tong Jian (2018), "Qiao's Surgery: Qiao's Modified Bidirectional Glenn Shunt and Incomplete Fontan Surgery", Surgical Atlas of Functional Single Ventricle and Hypoplastic Left Heart Syndrome, Singapore: Springer Singapore, pp. 39–46, doi:10.1007/978-981-10-8435-5_6, ISBN   978-981-10-8434-8 , retrieved 2022-02-08
  10. Kogon, Brian E.; Plattner, Courtney; Leong, Traci; Simsic, Janet; Kirshbom, Paul M.; Kanter, Kirk R. (November 2008). "The bidirectional Glenn operation: A risk factor analysis for morbidity and mortality". The Journal of Thoracic and Cardiovascular Surgery. 136 (5): 1237–1242. doi: 10.1016/j.jtcvs.2008.05.017 . ISSN   0022-5223. PMID   19026809.
  11. Meshalkin, E. N. (November 1956). "[Anastomosis of the upper vena cava with the pulmonary artery in patients with congenital heart disease with blood flow insufficiency in the lesser circulation]". Eksperimental'naia Khirurgiia. 1 (6): 3–12. PMID   13414634.
  12. 1 2 Glenn, William W. L. (1958-07-17). "Circulatory Bypass of the Right Side of the Heart". New England Journal of Medicine. 259 (3): 117–120. doi:10.1056/nejm195807172590304. ISSN   0028-4793. PMID   13566431.
  13. Azzolina, G.; Eufrate, S.; Pensa, P. (January 1972). "Tricuspid atresia: experience in surgical management with a modified cavopulmonary anastomosis". Thorax. 27 (1): 111–115. doi:10.1136/thx.27.1.111. ISSN   0040-6376. PMC   472475 . PMID   5017561.
  14. Rychik, Jack; Atz, Andrew M.; Celermajer, David S.; Deal, Barbara J.; Gatzoulis, Michael A.; Gewillig, Marc H.; Hsia, Tain-Yen; Hsu, Daphne T.; Kovacs, Adrienne H.; McCrindle, Brian W.; Newburger, Jane W. (2019-08-06). "Evaluation and Management of the Child and Adult With Fontan Circulation: A Scientific Statement From the American Heart Association". Circulation. 140 (6): CIR0000000000000696. doi: 10.1161/cir.0000000000000696 . ISSN   0009-7322. PMID   31256636. S2CID   207661855.
  15. Akintoye, Emmanuel; Miranda, William R; Veldtman, Gruschen R; Connolly, Heidi M; Egbe, Alexander C (2018-10-30). "National trends in Fontan operation and in-hospital outcomes in the USA". Heart. 105 (9): 708–714. doi:10.1136/heartjnl-2018-313680. ISSN   1355-6037. PMID   30377261. S2CID   53107398.
  16. Rodbard, S.; Wagner, D. (1949-05-01). "By-passing the Right Ventricle". Experimental Biology and Medicine. 71 (1): 69–70. doi:10.3181/00379727-71-17082. ISSN   1535-3702. PMID   18151480. S2CID   8376859.
  17. "Aortic subvalvular stenosis. Surgical treatment". Progress in Cardiovascular Diseases. 2 (6): 721. May 1960. doi:10.1016/s0033-0620(60)80057-6. ISSN   0033-0620.
  18. Kusaka, Yusuke; Sawai, Toshiyuki; Nakahira, Junko; Minami, Toshiaki (2015-08-27). "Persistent left superior vena cava with absent right superior vena cava detected during emergent coronary artery bypass grafting surgery". JA Clinical Reports. 1 (1): 2. doi:10.1186/s40981-015-0004-7. ISSN   2363-9024. PMC   5818686 . PMID   29497634.