Biomarkers of Alzheimer's disease

Last updated

The biomarkers of Alzheimer's disease are neurochemical indicators used to assess the risk or presence of the disease. The biomarkers can be used to diagnose Alzheimer's disease (AD) in a very early stage, but they also provide objective and reliable measures of disease progress. It is imperative to diagnose AD disease as soon as possible, because neuropathologic changes of AD precede the symptoms by years. [1] It is well known that amyloid beta (Aβ) is a good indicator of AD disease, which has facilitated doctors to accurately pre-diagnose cases of AD. When Aβ peptide is released by proteolytic cleavage of amyloid-beta precursor protein, [2] some Aβ peptides that are solubilized are detected in CSF and blood plasma which makes AB peptides a promising candidate for biological markers. It has been shown that the amyloid beta biomarker shows 80% or above sensitivity and specificity, in distinguishing AD from dementia. It is believed that amyloid beta as a biomarker will provide a future for diagnosis of AD and eventually treatment of AD. [3]

Contents

Amyloid beta

Amyloid beta (Aβ) is composed of a family of peptides produced by proteolytic cleavage of the type I transmembrane spanning glycoprotein amyloid-beta precursor protein (APP). Amyloid plaque Aβ protein species ends in residue 40 or 42, [4] but it is suspected that Aβ42 form is crucial in the pathogenesis of AD. Although Aβ42 makes up less than 10% of total Aβ, it aggregates at much faster rates than Aβ40. [5] Aβ42 is the initial and major component of amyloid plaque deposits. While the most prevalent hypothesis for mechanisms of Aβ-mediated neurotoxicity is structural damage to the synapse, various mechanisms such as oxidative stress, [6] altered calcium homeostasis, induction of apoptosis, structural damage, chronic inflammation and neuronal formation of amyloid has been proposed. Observation of AB42/AB40 ratio has been a promising biomarker for AD. However, as AB42 fails to be a reliable biomarker in plasma, attention was drawn for alternative biomarkers. [7]

Current biomarkers

BACE1

Various enzymatic digestion including beta secretase (β secretase), and gamma-secretase (γ-secretase) will cleave amyloid-beta precursor protein (APP) into various types of amyloid beta (Aβ) protein. Most β-secretase activity originates from an integral membrane aspartyle protease encoded by the β-site APP-cleaving enzyme 1 gene (BACE1). Dr. Zetterberg and his team used a sensitive and specific BACE1 assay to assess CSF BACE1 activity in AD. It was found that those with AD showed increased BACE1 expression and enzymatic activity. It was concluded that elevated BACE 1 activity may contribute to the amyloidgenic process in Alzheimer's disease. CSF BACE1 activity could be a potential candidate biomarker to monitor amyloidogenic APP metabolism in the CNS. [8]

Soluble Aβ precursor protein (sAPP)

APP is an integral membrane protein whose proteolysis generates beta amyloid ranging from 39- to 42- amino acid peptide. Although the biological function of APP are not known, it has been hypothesized that APP may play a role during neuroregeneration, and regulation of neural activity, connectivity, plasticity, and memory. Recent research has shown that large soluble APP (sAPP) [9] that are present in CSF may serve as a novel potential biomarker of Alzheimer's disease. In an article published in Nature, a group led by Lewczuk performed a test to observe the performance of a soluble form of APP α and β. A significant increase in sAPP α and sAPP β was found in people with AD as compared to normal subjects. However, the CSF level of α-sAPP and β-sAPP was found to be contradictory. Although many researchers have found that the CSF level of α sAPP increases in some people with AD, some report that there is no significant change, while Lannfelt argues that there is a slight decrease. Therefore, more studies using experimental models are needed in order to confirm the validity of sAPP as a biological marker for AD.

Autoantibodies

Researchers at Indiana University found that titres of anti-beta-amyloid antibodies in cerebral spinal fluid was lower in AD patients compared to healthy patients. [10]

Novel approach

Recent studies primarily focus on use of an autoantibody, not only for biological markers but for future treatment. However, there are various arguments whether an autoantibody method provides a reliable biomarker. A number of reports show that patients with AD have lower levels of serum anti-AB antibodies than healthy individuals, and others have argued that the level of anti-AB antibody may be higher in AD. In order to avoid provide solution for discrepancy in the existing data, Dr. Gustaw came up with novel method of dissociation sample. [11]

Theory

In biological fluids, antibodies and antigens are in a state of dynamic equilibrium between bound and unbound forms that is concentration-dependent. As antigen masks the antibody, it obstructs accurate measurement of antibody-antigen detection. Dr. Gustow discovered a novel way to enhance antibody-antigen detection. Using a dissociation buffer (1.5% bovine serum albumin (BSA) and 0.2M glycine HCl pH2/5), he dissociated antigen-antibody complexes. In dissociated samples, unbound antigen-antibody complexes reveal increased disease state compared to non-diseased state.

Method

Result

The white block represents non-dissociation data. The black block represents dissociation data. As the ELISA result shows, the detection of antibody is blocked by addition of beta-amyloid when the experiment was performed without dissociation. Following dissociation, the level of antibody detected increased to a level nearly control to level of control.

He used the same methodology in vivo to examine sera collected from AD patients. The results, surprisingly, demonstrated a significant increase in antibody titer. It contradicts the majority of studies arguing that the amyloid-beta antibody decreases in AD patients. The non-dissociated sample follows the widespread theory that amyloid-beta decreases in AD patients. However, he had already proven that a non-dissociated sample fails to bring out a valid result. The dissociated sample results show significant increases in AD patients, which contradicts the majority of previous studies.

Contribution

Currently, there are many biomarkers for diagnosis of Alzheimer's disease. However, most of them do not provide consistent data results. The novel approach (autoantibody) not only explained the discrepancy of results in previous studies of autoantibody, but provided a new standard as a biomarker of Alzheimer's disease. Compared to other biomarkers which have variable measurements on diagnosis of AD, the new autoantibody approach accurately measures Aβ level with high sensitivity, and proved itself to be an excellent biomarker for Alzheimer's disease. It is believed that the new technology will provide not only future early diagnosis of Alzheimer's disease but also possible therapy for Alzheimer's disease. An open international study group (ND.Neuromark.net) has been constituted for arranging scientific information and developing a rational guide for implementing biomarkers into routine practice.

See also

Related Research Articles

<span class="mw-page-title-main">Amyloid beta</span> Group of peptides

Amyloid beta denotes peptides of 36–43 amino acids that are the main component of the amyloid plaques found in the brains of people with Alzheimer's disease. The peptides derive from the amyloid-beta precursor protein (APP), which is cleaved by beta secretase and gamma secretase to yield Aβ in a cholesterol-dependent process and substrate presentation. Aβ molecules can aggregate to form flexible soluble oligomers which may exist in several forms. It is now believed that certain misfolded oligomers can induce other Aβ molecules to also take the misfolded oligomeric form, leading to a chain reaction akin to a prion infection. The oligomers are toxic to nerve cells. The other protein implicated in Alzheimer's disease, tau protein, also forms such prion-like misfolded oligomers, and there is some evidence that misfolded Aβ can induce tau to misfold.

<span class="mw-page-title-main">Amyloid-beta precursor protein</span> Mammalian protein found in humans

Amyloid-beta precursor protein (APP) is an integral membrane protein expressed in many tissues and concentrated in the synapses of neurons. It functions as a cell surface receptor and has been implicated as a regulator of synapse formation, neural plasticity, antimicrobial activity, and iron export. It is coded for by the gene APP and regulated by substrate presentation. APP is best known as the precursor molecule whose proteolysis generates amyloid beta (Aβ), a polypeptide containing 37 to 49 amino acid residues, whose amyloid fibrillar form is the primary component of amyloid plaques found in the brains of Alzheimer's disease patients.

<span class="mw-page-title-main">Amyloid plaques</span> Extracellular deposits of the amyloid beta protein

Amyloid plaques are extracellular deposits of the amyloid beta (Aβ) protein mainly in the grey matter of the brain. Degenerative neuronal elements and an abundance of microglia and astrocytes can be associated with amyloid plaques. Some plaques occur in the brain as a result of aging, but large numbers of plaques and neurofibrillary tangles are characteristic features of Alzheimer's disease. The plaques are highly variable in shape and size; in tissue sections immunostained for Aβ, they comprise a log-normal size distribution curve, with an average plaque area of 400-450 square micrometers (µm²). The smallest plaques, which often consist of diffuse deposits of Aβ, are particularly numerous. Plaques form when Aβ misfolds and aggregates into oligomers and longer polymers, the latter of which are characteristic of amyloid.

<span class="mw-page-title-main">Beta-secretase 1</span> Enzyme

Beta-secretase 1, also known as beta-site amyloid precursor protein cleaving enzyme 1, beta-site APP cleaving enzyme 1 (BACE1), membrane-associated aspartic protease 2, memapsin-2, aspartyl protease 2, and ASP2, is an enzyme that in humans is encoded by the BACE1 gene. Expression of BACE1 is observed mainly in neurons.

<span class="mw-page-title-main">Protein kinase R</span> Human protein and coding gene

Protein kinase RNA-activated also known as protein kinase R (PKR), interferon-induced, double-stranded RNA-activated protein kinase, or eukaryotic translation initiation factor 2-alpha kinase 2 (EIF2AK2) is an enzyme that in humans is encoded by the EIF2AK2 gene on chromosome 2. PKR is a serine/tyrosine kinase that is 551 amino acids long.

<span class="mw-page-title-main">Monoclonal antibody therapy</span> Form of immunotherapy

Monoclonal antibodies (mAbs) have varied therapeutic uses. It is possible to create a mAb that binds specifically to almost any extracellular target, such as cell surface proteins and cytokines. They can be used to render their target ineffective, to induce a specific cell signal, to cause the immune system to attack specific cells, or to bring a drug to a specific cell type.

The biochemistry of Alzheimer's disease, the most common cause of dementia, is not yet very well understood. Alzheimer's disease (AD) has been identified as a proteopathy: a protein misfolding disease due to the accumulation of abnormally folded amyloid beta (Aβ) protein in the brain. Amyloid beta is a short peptide that is an abnormal proteolytic byproduct of the transmembrane protein amyloid-beta precursor protein (APP), whose function is unclear but thought to be involved in neuronal development. The presenilins are components of proteolytic complex involved in APP processing and degradation.

<span class="mw-page-title-main">Gamma secretase</span> Type of protein

Gamma secretase is a multi-subunit protease complex, itself an integral membrane protein, that cleaves single-pass transmembrane proteins at residues within the transmembrane domain. Proteases of this type are known as intramembrane proteases. The most well-known substrate of gamma secretase is amyloid precursor protein, a large integral membrane protein that, when cleaved by both gamma and beta secretase, produces a short 37-43 amino acid peptide called amyloid beta whose abnormally folded fibrillar form is the primary component of amyloid plaques found in the brains of Alzheimer's disease patients. Gamma secretase is also critical in the related processing of several other type I integral membrane proteins, such as Notch, ErbB4, E-cadherin, N-cadherin, ephrin-B2, or CD44.

<span class="mw-page-title-main">Presenilin</span>

Presenilins are a family of related multi-pass transmembrane proteins which constitute the catalytic subunits of the gamma-secretase intramembrane protease protein complex. They were first identified in screens for mutations causing early onset forms of familial Alzheimer's disease by Peter St George-Hyslop. Vertebrates have two presenilin genes, called PSEN1 that codes for presenilin 1 (PS-1) and PSEN2 that codes for presenilin 2 (PS-2). Both genes show conservation between species, with little difference between rat and human presenilins. The nematode worm C. elegans has two genes that resemble the presenilins and appear to be functionally similar, sel-12 and hop-1.

Bapineuzumab is a humanized monoclonal antibody that acts on the nervous system and may have potential therapeutic value for the treatment of Alzheimer's disease and possibly glaucoma. However, in 2012 it failed to produce significant cognitive improvements in patients in two major trials, despite lowering key biomarkers of AD, amyloid brain plaque and hyperphosphorylated tau protein in CSF.

<span class="mw-page-title-main">Insulin-degrading enzyme</span> Mammalian protein found in Homo sapiens

Insulin-degrading enzyme, also known as IDE, is an enzyme.

Early-onset Alzheimer's disease (EOAD), also called younger-onset Alzheimer's disease (YOAD), is Alzheimer's disease diagnosed before the age of 65. It is an uncommon form of Alzheimer's, accounting for only 5–10% of all Alzheimer's cases. About 60% have a positive family history of Alzheimer's and 13% of them are inherited in an autosomal dominant manner. Most cases of early-onset Alzheimer's share the same traits as the "late-onset" form and are not caused by known genetic mutations. Little is understood about how it starts.

Solanezumab is a monoclonal antibody being investigated by Eli Lilly as a neuroprotector for patients with Alzheimer's disease. The drug originally attracted extensive media coverage proclaiming it a breakthrough, but it has failed to show promise in Phase III trials.

<span class="mw-page-title-main">Rudolph E. Tanzi</span> American geneticist

Rudolph Emile 'Rudy' Tanzi a professor of Neurology at Harvard University, vice-chair of neurology, director of the Genetics and Aging Research Unit, and co-director of the Henry and Allison McCance Center for Brain Health at Massachusetts General Hospital (MGH).

<span class="mw-page-title-main">P3 peptide</span>

p3 peptide also known as amyloid β- peptide (Aβ)17–40/42 is the peptide resulting from the α- and γ-secretase cleavage from the amyloid precursor protein (APP). It is known to be the major constituent of diffuse plaques observed in Alzheimer's disease (AD) brains and pre-amyloid plaques in people affected by Down syndrome. However, p3 peptide's role in these diseases is not truly known yet.

Donanemab is a biological drug in Phase III clinical trials to determine whether it slows the progression of early Alzheimer's disease. Donanemab has shown positive results in its first trials. Donanemab was developed by the Eli Lilly and Co. and is under clinical development as a possible treatment for Alzheimer's disease. There is currently no approved cure or disease-modifying treatment for Alzheimer's disease except for lecanemab.

Alzheimer's disease (AD) in the Hispanic/Latino population is becoming a topic of interest in AD research as Hispanics and Latinos are disproportionately affected by Alzheimer's Disease and underrepresented in clinical research. AD is a neurodegenerative disease, characterized by the presence of amyloid-beta plaques and neurofibrillary tangles, that causes memory loss and cognitive decline in its patients. However, pathology and symptoms have been shown to manifest differently in Hispanic/Latinos, as different neuroinflammatory markers are expressed and cognitive decline is more pronounced. Additionally, there is a large genetic component of AD, with mutations in the amyloid precursor protein (APP), Apolipoprotein E APOE), presenilin 1 (PSEN1), bridging Integrator 1 (BIN1), SORL1, and Clusterin (CLU) genes increasing one's risk to develop the condition. However, research has shown these high-risk genes have a different effect on Hispanics and Latinos then they do in other racial and ethnic groups. Additionally, this population experiences higher rates of comorbidities, that increase their risk of developing AD. Hispanics and Latinos also face socioeconomic and cultural factors, such as low income and a language barrier, that affect their ability to engage in clinical trials and receive proper care.

Alzheimer's disease (AD) in African Americans is becoming a rising topic of interest in AD care, support, and scientific research, as African Americans are disproportionately affected by AD. Recent research on AD has shown that there are clear disparities in the disease among racial groups, with higher prevalence and incidence in African Americans than the overall average. Pathologies for Alzheimer’s also seem to manifest differently in African Americans, including with neuroinflammation markers, cognitive decline, and biomarkers. Although there are genetic risk factors for Alzheimer’s, these account for few cases in all racial groups.

<span class="mw-page-title-main">Buntanetap</span> Chemical compound

Buntanetap is an orally-administered small molecule inhibitor of several neurotoxic proteins that is under investigation in the treatment of Alzheimer's disease, frontotemporal dementia, chronic traumatic encephalopathy and Parkinson's disease. It is the (+) enantiomer of phenserine, as the (-) enantiomer also has unwanted anticholinergic effects. It is currently in phase III trials for the treatment of Parkinson's.

Alzheimer's disease (AD) is a complex neurodegenerative disease that affects millions of people across the globe. It is also a topic of interest in the East Asian population, especially as the burden of disease increases due to aging and population growth. The pathogenesis of AD between ethnic groups is different. However, prior studies in AD pathology have focused primarily on populations of European ancestry and may not give adequate insight on the genetic, clinical, and biological differences found in East Asians with AD. Gaps in knowledge regarding Alzheimer's disease in the East Asian population introduce serious barriers to screening, early prevention, diagnosis, treatment, and timely intervention.

References

  1. Lloret A, Esteve D, Lloret MA, Cervera-Ferri A, Lopez B, Nepomuceno M, Monllor P (November 2019). "When Does Alzheimer's Disease Really Start? The Role of Biomarkers". International Journal of Molecular Sciences. 20 (22): 5536. doi: 10.3390/ijms20225536 . PMC   6888399 . PMID   31698826.
  2. Palop JJ, Mucke L (July 2010). "Amyloid-beta-induced neuronal dysfunction in Alzheimer's disease: from synapses toward neural networks". Nature Neuroscience. 13 (7): 812–818. doi:10.1038/nn.2583. PMC   3072750 . PMID   20581818.
  3. Bateman RJ, Munsell LY, Morris JC, Swarm R, Yarasheski KE, Holtzman DM (July 2006). "Human amyloid-beta synthesis and clearance rates as measured in cerebrospinal fluid in vivo". Nature Medicine. 12 (7): 856–861. doi:10.1038/nm1438. PMC   2983090 . PMID   16799555.
  4. Hansson O, Zetterberg H, Vanmechelen E, Vanderstichele H, Andreasson U, Londos E, et al. (March 2010). "Evaluation of plasma Abeta(40) and Abeta(42) as predictors of conversion to Alzheimer's disease in patients with mild cognitive impairment". Neurobiology of Aging. 31 (3): 357–367. doi:10.1016/j.neurobiolaging.2008.03.027. PMID   18486992. S2CID   30535386.
  5. Hampel H, Shen Y, Walsh DM, Aisen P, Shaw LM, Zetterberg H, et al. (June 2010). "Biological markers of amyloid beta-related mechanisms in Alzheimer's disease". Experimental Neurology. 223 (2): 334–346. doi:10.1016/j.expneurol.2009.09.024. PMC   2896007 . PMID   19815015.
  6. Tew DJ, Bottomley SP, Smith DP, Ciccotosto GD, Babon J, Hinds MG, et al. (April 2008). "Stabilization of neurotoxic soluble beta-sheet-rich conformations of the Alzheimer's disease amyloid-beta peptide". Biophysical Journal. 94 (7): 2752–2766. Bibcode:2008BpJ....94.2752T. doi:10.1529/biophysj.107.119909. PMC   2267149 . PMID   18065467.
  7. Rival T, Page RM, Chandraratna DS, Sendall TJ, Ryder E, Liu B, et al. (April 2009). "Fenton chemistry and oxidative stress mediate the toxicity of the beta-amyloid peptide in a Drosophila model of Alzheimer's disease". The European Journal of Neuroscience. 29 (7): 1335–1347. doi:10.1111/j.1460-9568.2009.06701.x. PMC   2777252 . PMID   19519625.
  8. Zetterberg H, Andreasson U, Hansson O, Wu G, Sankaranarayanan S, Andersson ME, et al. (August 2008). "Elevated cerebrospinal fluid BACE1 activity in incipient Alzheimer disease". Archives of Neurology. 65 (8): 1102–1107. doi: 10.1001/archneur.65.8.1102 . PMID   18695061.
  9. Seubert P, Vigo-Pelfrey C, Esch F, Lee M, Dovey H, Davis D, et al. (September 1992). "Isolation and quantification of soluble Alzheimer's beta-peptide from biological fluids". Nature. 359 (6393): 325–327. Bibcode:1992Natur.359..325S. doi:10.1038/359325a0. PMID   1406936. S2CID   4371135.
  10. Du Y, Dodel R, Hampel H, Buerger K, Lin S, Eastwood B, et al. (September 2001). "Reduced levels of amyloid beta-peptide antibody in Alzheimer disease". Neurology. 57 (5): 801–805. doi:10.1212/wnl.57.5.801. PMID   11552007. S2CID   11013777.
  11. Gustaw KA, Garrett MR, Lee HG, Castellani RJ, Zagorski MG, Prakasam A, et al. (August 2008). "Antigen-antibody dissociation in Alzheimer disease: a novel approach to diagnosis". Journal of Neurochemistry. 106 (3): 1350–1356. doi:10.1111/j.1471-4159.2008.05477.x. PMC   2575068 . PMID   18485104.