Blocking (computing)

Last updated

In computing, a process that is blocked is waiting for some event, such as a resource becoming available or the completion of an I/O operation. [1] Once the event occurs for which the process is waiting ("is blocked on"), the process is advanced from blocked state to an imminent one, such as runnable.

In a multitasking computer system, individual tasks, or threads of execution, must share the resources of the system. Shared resources include: the CPU, network and network interfaces, memory and disk.

When one task is using a resource, it is generally not possible, or desirable, for another task to access it. The techniques of mutual exclusion are used to prevent this concurrent use. When the other task is blocked, it is unable to execute until the first task has finished using the shared resource.

Programming languages and scheduling algorithms are designed to minimize the over-all effect of blocking. A process that blocks may prevent local work-tasks from progressing. In this case "blocking" often is seen as not wanted. [2] However, such work-tasks may instead have been assigned to independent processes, where halting one has little to no effect on the others, since scheduling will continue. An example is "blocking on a channel" where passively waiting for the other part (i.e. no polling or spin loop) is part of the semantics of channels. [3] Correctly engineered, any of these may be used to implement reactive systems.[ clarification needed ]

Deadlock means that processes pathologically wait for each other in a circle. As such it is not directly associated with blocking.

See also

Related Research Articles

<span class="mw-page-title-main">Computer multitasking</span> Concurrent execution of multiple processes

In computing, multitasking is the concurrent execution of multiple tasks over a certain period of time. New tasks can interrupt already started ones before they finish, instead of waiting for them to end. As a result, a computer executes segments of multiple tasks in an interleaved manner, while the tasks share common processing resources such as central processing units (CPUs) and main memory. Multitasking automatically interrupts the running program, saving its state and loading the saved state of another program and transferring control to it. This "context switch" may be initiated at fixed time intervals, or the running program may be coded to signal to the supervisory software when it can be interrupted.

A real-time operating system (RTOS) is an operating system (OS) for real-time computing applications that processes data and events that have critically defined time constraints. An RTOS is distinct from a time-sharing operating system, such as Unix, which manages the sharing of system resources with a scheduler, data buffers, or fixed task prioritization in multitasking or multiprogramming environments. Processing time requirements need to be fully understood and bound rather than just kept as a minimum. All processing must occur within the defined constraints. Real-time operating systems are event-driven and preemptive, meaning the OS can monitor the relevant priority of competing tasks, and make changes to the task priority. Event-driven systems switch between tasks based on their priorities, while time-sharing systems switch the task based on clock interrupts.

<span class="mw-page-title-main">Mutual exclusion</span> In computing, restricting data to be accessible by one thread at a time

In computer science, mutual exclusion is a property of concurrency control, which is instituted for the purpose of preventing race conditions. It is the requirement that one thread of execution never enters a critical section while a concurrent thread of execution is already accessing said critical section, which refers to an interval of time during which a thread of execution accesses a shared resource or shared memory.

<span class="mw-page-title-main">Process (computing)</span> Particular execution of a computer program

In computing, a process is the instance of a computer program that is being executed by one or many threads. There are many different process models, some of which are light weight, but almost all processes are rooted in an operating system (OS) process which comprises the program code, assigned system resources, physical and logical access permissions, and data structures to initiate, control and coordinate execution activity. Depending on the OS, a process may be made up of multiple threads of execution that execute instructions concurrently.

<span class="mw-page-title-main">Thread (computing)</span> Smallest sequence of programmed instructions that can be managed independently by a scheduler

In computer science, a thread of execution is the smallest sequence of programmed instructions that can be managed independently by a scheduler, which is typically a part of the operating system. In many cases, a thread is a component of a process.

<span class="mw-page-title-main">Deadlock (computer science)</span> State in which members are blocking each other

In concurrent computing, deadlock is any situation in which no member of some group of entities can proceed because each waits for another member, including itself, to take action, such as sending a message or, more commonly, releasing a lock. Deadlocks are a common problem in multiprocessing systems, parallel computing, and distributed systems, because in these contexts systems often use software or hardware locks to arbitrate shared resources and implement process synchronization.

<span class="mw-page-title-main">Parallel computing</span> Programming paradigm in which many processes are executed simultaneously

Parallel computing is a type of computation in which many calculations or processes are carried out simultaneously. Large problems can often be divided into smaller ones, which can then be solved at the same time. There are several different forms of parallel computing: bit-level, instruction-level, data, and task parallelism. Parallelism has long been employed in high-performance computing, but has gained broader interest due to the physical constraints preventing frequency scaling. As power consumption by computers has become a concern in recent years, parallel computing has become the dominant paradigm in computer architecture, mainly in the form of multi-core processors.

In computing, scheduling is the action of assigning resources to perform tasks. The resources may be processors, network links or expansion cards. The tasks may be threads, processes or data flows.

<span class="mw-page-title-main">Round-robin scheduling</span> Algorithm employed by process and network schedulers in computing

Round-robin (RR) is one of the algorithms employed by process and network schedulers in computing. As the term is generally used, time slices are assigned to each process in equal portions and in circular order, handling all processes without priority. Round-robin scheduling is simple, easy to implement, and starvation-free. Round-robin scheduling can be applied to other scheduling problems, such as data packet scheduling in computer networks. It is an operating system concept.

In computer science, a lock or mutex is a synchronization primitive that prevents state from being modified or accessed by multiple threads of execution at once. Locks enforce mutual exclusion concurrency control policies, and with a variety of possible methods there exist multiple unique implementations for different applications.

In computer science, resource starvation is a problem encountered in concurrent computing where a process is perpetually denied necessary resources to process its work. Starvation may be caused by errors in a scheduling or mutual exclusion algorithm, but can also be caused by resource leaks, and can be intentionally caused via a denial-of-service attack such as a fork bomb.

In computer science, an algorithm is called non-blocking if failure or suspension of any thread cannot cause failure or suspension of another thread; for some operations, these algorithms provide a useful alternative to traditional blocking implementations. A non-blocking algorithm is lock-free if there is guaranteed system-wide progress, and wait-free if there is also guaranteed per-thread progress. "Non-blocking" was used as a synonym for "lock-free" in the literature until the introduction of obstruction-freedom in 2003.

In concurrent programming, concurrent accesses to shared resources can lead to unexpected or erroneous behavior. Thus, the parts of the program where the shared resource is accessed need to be protected in ways that avoid the concurrent access. One way to do so is known as a critical section or critical region. This protected section cannot be entered by more than one process or thread at a time; others are suspended until the first leaves the critical section. Typically, the critical section accesses a shared resource, such as a data structure, peripheral device, or network connection, that would not operate correctly in the context of multiple concurrent accesses.

<span class="mw-page-title-main">Thread pool</span> Software design pattern

In computer programming, a thread pool is a software design pattern for achieving concurrency of execution in a computer program. Often also called a replicated workers or worker-crew model, a thread pool maintains multiple threads waiting for tasks to be allocated for concurrent execution by the supervising program. By maintaining a pool of threads, the model increases performance and avoids latency in execution due to frequent creation and destruction of threads for short-lived tasks. The number of available threads is tuned to the computing resources available to the program, such as a parallel task queue after completion of execution.

<span class="mw-page-title-main">Concurrency (computer science)</span> Ability to execute a task in a non-serial manner

In computer science, concurrency is the ability of different parts or units of a program, algorithm, or problem to be executed out-of-order or in partial order, without affecting the outcome. This allows for parallel execution of the concurrent units, which can significantly improve overall speed of the execution in multi-processor and multi-core systems. In more technical terms, concurrency refers to the decomposability of a program, algorithm, or problem into order-independent or partially-ordered components or units of computation.

In computing, a system resource, or simply resource, is any physical or virtual component of limited availability that is accessible to a computer. All connected devices and internal system components are resources. Virtual system resources include files, network connections, and memory areas.

In computer science, gang scheduling is a scheduling algorithm for parallel systems that schedules related threads or processes to run simultaneously on different processors. Usually these will be threads all belonging to the same process, but they may also be from different processes, where the processes could have a producer-consumer relationship or come from the same MPI program.

Concurrent computing is a form of computing in which several computations are executed concurrently—during overlapping time periods—instead of sequentially—with one completing before the next starts.

Operating systems use lock managers to organise and serialise the access to resources. A distributed lock manager (DLM) runs in every machine in a cluster, with an identical copy of a cluster-wide lock database. In this way a DLM provides software applications which are distributed across a cluster on multiple machines with a means to synchronize their accesses to shared resources.

In computer science, synchronization is the task of coordinating multiple processes to join up or handshake at a certain point, in order to reach an agreement or commit to a certain sequence of action.

References

  1. Stallings, William (2004). Operating Systems: Internals and Design Principles (5th ed.). Prentice Hall. ISBN   978-0131479548.
  2. C++ and Beyond 2012: Herb Sutter - C++ Concurrency
  3. Rob Pike (2012-07-02). Go Concurrency Patterns. Google I/O 2012. Google for Developers.