Bomanin

Last updated
Bomanin
Drosophila melanogaster Proboscis.jpg
The fruit fly, Drosophila melanogaster
Identifiers
Organism Drosophila melanogaster
SymbolBom
UniProt P82706
Search for
Structures Swiss-model
Domains InterPro

The Bomanin gene family encodes a group of immune peptides that are essential for Drosophila fruit fly defence against infection by many pathogens. [1] [2]

The gene family is named in honour of Hans G. Boman, for his contributions to innate immunity and the discovery of antimicrobial peptides. [1] While Bomanins are essential for survival after infection by many kinds of Gram-positive bacteria and pathogenic fungi, the reason they are key to defence may be because Bomanins promote resilience to pathogen toxins, and not because they directly suppress pathogens. [3] However fly hemolymph (blood) loses its fungicidal activity in the absence of Bomanins, suggesting these peptides are also somehow needed to turn the hemolymph into an antimicrobial environment. [4]

See also

Related Research Articles

<i>Drosophila melanogaster</i> Species of fruit fly

Drosophila melanogaster is a species of fly in the family Drosophilidae. The species is often referred to as the fruit fly or lesser fruit fly, or less commonly the "vinegar fly" or "pomace fly", or "banana fly". Starting with Charles W. Woodworth's 1901 proposal of the use of this species as a model organism, D. melanogaster continues to be widely used for biological research in genetics, physiology, microbial pathogenesis, and life history evolution. As of 2017, six Nobel Prizes have been awarded to drosophilists for their work using the insect.

<span class="mw-page-title-main">Toll-like receptor</span> Pain receptors and inflammation

Toll-like receptors (TLRs) are a class of proteins that play a key role in the innate immune system. They are single-pass membrane-spanning receptors usually expressed on sentinel cells such as macrophages and dendritic cells, that recognize structurally conserved molecules derived from microbes. Once these microbes have reached physical barriers such as the skin or intestinal tract mucosa, they are recognized by TLRs, which activate immune cell responses. The TLRs include TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR10, TLR11, TLR12, and TLR13. Humans lack genes for TLR11, TLR12 and TLR13 and mice lack a functional gene for TLR10. TLR1, TLR2, TLR4, TLR5, TLR6, and TLR10 are located on the cell membrane, whereas TLR3, TLR7, TLR8, and TLR9 are located in intracellular vesicles.

<span class="mw-page-title-main">Innate immune system</span> One of the two main immunity strategies

The innate, or nonspecific, immune system is one of the two main immunity strategies in vertebrates. The innate immune system is an alternate defense strategy and is the dominant immune system response found in plants, fungi, insects, and primitive multicellular organisms.

A hemocyte is a cell that plays a role in the immune system of invertebrates. It is found within the hemolymph. Hemocytes are phagocytes of invertebrates.

<span class="mw-page-title-main">Toll-like receptor 2</span> One of the toll-like receptors and plays a role in the immune system

Toll-like receptor 2 also known as TLR2 is a protein that in humans is encoded by the TLR2 gene. TLR2 has also been designated as CD282. TLR2 is one of the toll-like receptors and plays a role in the immune system. TLR2 is a membrane protein, a receptor, which is expressed on the surface of certain cells and recognizes foreign substances and passes on appropriate signals to the cells of the immune system.

<span class="mw-page-title-main">Jules A. Hoffmann</span>

Jules Alphonse Nicolas Hoffmann is a Luxembourg-born French biologist. During his youth, growing up in Luxembourg, he developed a strong interest in insects under the influence of his father, Jos Hoffmann. This eventually resulted in the younger Hoffmann's dedication to the field of biology using insects as model organisms. He currently holds a faculty position at the University of Strasbourg. He is a research director and member of the board of administrators of the National Center of Scientific Research (CNRS) in Strasbourg, France. He was elected to the positions of Vice-President (2005-2006) and President (2007-2008) of the French Academy of Sciences. Hoffmann and Bruce Beutler were jointly awarded a half share of the 2011 Nobel Prize in Physiology or Medicine for "their discoveries concerning the activation of innate immunity,". [More specifically, the work showing increased Drosomycin expression following activation of Toll pathway in microbial infection.]

Thioester containing protein 1, often called TEP1 is a key component of the arthropod innate immune system. TEP1 was first identified as a key immunity gene in 2001 through functional studies on Anopheles gambiae mosquitoes.

The microbiota are the sum of all symbiotic microorganisms living on or in an organism. The fruit fly Drosophila melanogaster is a model organism and known as one of the most investigated organisms worldwide. The microbiota in flies is less complex than that found in humans. It still has an influence on the fitness of the fly, and it affects different life-history characteristics such as lifespan, resistance against pathogens (immunity) and metabolic processes (digestion). Considering the comprehensive toolkit available for research in Drosophila, analysis of its microbiome could enhance our understanding of similar processes in other types of host-microbiota interactions, including those involving humans. Microbiota plays key roles in the intestinal immune and metabolic responses via their fermentation product, acetate.

<span class="mw-page-title-main">Peptidoglycan recognition protein</span>

Peptidoglycan recognition proteins (PGRPs) are a group of highly conserved pattern recognition receptors with at least one peptidoglycan recognition domain capable of recognizing the peptidoglycan component of the cell wall of bacteria. They are present in insects, mollusks, echinoderms and chordates. The mechanism of action of PGRPs varies between taxa. In insects, PGRPs kill bacteria indirectly by activating one of four unique effector pathways: prophenoloxidase cascade, Toll pathway, IMD pathway, and induction of phagocytosis. In mammals, PGRPs either kill bacteria directly by interacting with their cell wall or outer membrane, or hydrolyze peptidoglycan. They also modulate inflammation and microbiome and interact with host receptors.

<span class="mw-page-title-main">Drosomycin</span>

Drosomycin is an antifungal peptide from Drosophila melanogaster and was the first antifungal peptide isolated from insects. Drosomycin is induced by infection by the Toll signalling pathway, while expression in surface epithelia like the respiratory tract is instead controlled by the immune deficiency pathway (Imd). This means that drosomycin, alongside other antimicrobial peptides (AMPs) such as cecropins, diptericin, drosocin, metchnikowin and attacin, serves as a first line defence upon septic injury. However drosomycin is also expressed constitutively to a lesser extent in different tissues and throughout development.

<i>Drosophila neotestacea</i> Species of fly

Drosophila neotestacea is a member of the testacea species group of Drosophila. Testacea species are specialist fruit flies that breed on the fruiting bodies of mushrooms. These flies will choose to breed on psychoactive mushrooms such as the Fly Agaric Amanita muscaria. Drosophila neotestacea can be found in temperate regions of North America, ranging from the north eastern United States to western Canada.

Hans Gustaf Boman (1924-2008) was a Swedish microbiologist with a special focus on innate immunity. Boman was born on 16 August 1924 in Engelbrekt Parish, Stockholm, Sweden, and died on 3 December 2008. Boman's pioneering research on insect immunity formed the basis for the Nobel Prize in Physiology or Medicine 2011.

<span class="mw-page-title-main">Diptericin</span>

Diptericin is a 9 kDa antimicrobial peptide (AMP) of flies first isolated from the blowfly Phormia terranova. It is primarily active against Gram-negative bacteria, disrupting bacterial membrane integrity. The structure of this protein includes a proline-rich domain with similarities to the AMPs drosocin, pyrrhocoricin, and abaecin, and a glycine-rich domain with similarity to attacin. Diptericin is an iconic readout of immune system activity in flies, used ubiquitously in studies of Drosophila immunity. Diptericin is named after the insect order Diptera.

<span class="mw-page-title-main">Drosocin</span> Antimicrobial peptide

Drosocin is a 19-residue long antimicrobial peptide (AMP) of flies first isolated in the fruit fly Drosophila melanogaster, and later shown to be conserved throughout the genus Drosophila. Drosocin is regulated by the NF-κB Imd signalling pathway in the fly.

<span class="mw-page-title-main">Metchnikowin</span> Antimicrobial peptide

Metchnikowin is a 26-residue antimicrobial peptide of the fruit fly Drosophila melanogaster that displays both antibacterial and antifungal properties. This peptide is expressed strongly in the Drosophila fat body, but is also expressed at surface epithelia in the trachea and gut. This is regulated by the NF-κB signalling pathways Toll and Imd. Metchnikowin is named after Russian immunologist Élie Metchnikoff, one of the founders of modern immunology.

<i>Drosophila quinaria</i> species group Species group of the subgenus Drosophila

The Drosophila quinaria species group is a speciose lineage of mushroom-feeding flies studied for their specialist ecology, their parasites, population genetics, and the evolution of immune systems. Quinaria species are part of the Drosophila subgenus.

<i>Drosophila innubila</i> Species of fly

Drosophila innubila is a species of vinegar fly restricted to high-elevation woodlands in the mountains of the southern USA and Mexico, which it likely colonized during the last glacial period. Drosophila innubila is a kind of mushroom-breeding Drosophila, and member of the Drosophila quinaria species group. Drosophila innubila is best known for its association with a strain of male-killing Wolbachia bacteria. These bacteria are parasitic, as they drain resources from the host and cause half the infected female's eggs to abort. However Wolbachia may offer benefits to the fly's fitness in certain circumstances. The D. innubila genome was sequenced in 2019.

<span class="mw-page-title-main">Imd pathway</span> Immune signaling pathway of insects

The Imd pathway is a broadly-conserved NF-κB immune signalling pathway of insects and some arthropods that regulates a potent antibacterial defence response. The pathway is named after the discovery of a mutation causing severe immune deficiency. The Imd pathway was first discovered in 1995 using Drosophila fruit flies by Bruno Lemaitre and colleagues, who also later discovered that the Drosophila Toll gene regulated defence against Gram-positive bacteria and fungi. Together the Toll and Imd pathways have formed a paradigm of insect immune signalling; as of September 2, 2019, these two landmark discovery papers have been cited collectively over 5000 times since publication on Google Scholar.

Baramicin (Bara) is an antimicrobial peptide gene of the fruit fly Drosophila melanogaster. Baramicin is a prominent element of the fly immune response: of the most abundant immune peptides detected in the fly hemolymph, the BaraA gene is responsible for 9 of the 24 peptides first described for their high concentrations after systemic infection.

<span class="mw-page-title-main">Daisho (Drosophila peptide)</span> Antimicrobial peptide immune gene of fruit flies

Daisho (Dso) is an antimicrobial peptide gene family of the fruit fly Drosophila melanogaster. Two Daisho genes are encoded in tandem in the fruit fly genome, one shorter than the other. This pair of genes with different length was named "Daisho" in reference to Daisho Japanese swords, which come in pairs with one shorter than the other.

References

  1. 1 2 Clemmons AW, Lindsay SA, Wasserman SA (April 2015). Silverman N (ed.). "An effector Peptide family required for Drosophila toll-mediated immunity". PLOS Pathogens. 11 (4): e1004876. doi:10.1371/journal.ppat.1004876. PMC   4411088 . PMID   25915418.
  2. Hanson MA, Dostálová A, Ceroni C, Poidevin M, Kondo S, Lemaitre B (February 2019). "Synergy and remarkable specificity of antimicrobial peptides in vivo using a systematic knockout approach". eLife. 8: e44341. doi:10.7554/eLife.44341. PMC   6398976 . PMID   30803481.
  3. Xu R, Lou Y, Tidu A, Bulet P, Heinekamp T, Martin F, et al. (January 2023). "The Toll pathway mediates Drosophila resilience to Aspergillus mycotoxins through specific Bomanins". EMBO Reports. 24 (1): e56036. doi:10.15252/embr.202256036. PMC   9827548 . PMID   36322050.
  4. Lindsay SA, Lin SJ, Wasserman SA (2018). "Short-Form Bomanins Mediate Humoral Immunity in Drosophila". Journal of Innate Immunity. 10 (4): 306–314. doi:10.1159/000489831. PMC   6158068 . PMID   29920489.