Bradley Alpert

Last updated
Bradley K. Alpert
Bradley Alpert 1991 (headshot).jpg
NationalityAmerican
Alma mater University of Illinois at Urbana-Champaign (B.S.), University of Chicago (S.M.), Yale University (Ph.D.)
Awards Flemming Award, Bronze Medal of the U.S. Department of Commerce
Scientific career
Fields Computational science
Institutions National Institute of Standards and Technology

Bradley K. Alpert is a computational scientist at NIST. He is probably best known for co-developing fast spherical filters. [1] His fast spherical filters were (and remain) critical in the construction of the most efficient three-dimensional fast multipole methods (FMMs) for solving the Helmholtz equation and Maxwell's equations. Other well-known work of his includes contributions to computational methods for time-domain wave propagation, [2] [3] [4] quadratures for singular integrals, [5] [6] and multiwavelets. [7]

Alpert was awarded the 2006 Flemming Award for his work on spherical filters and his other contributions to scientific computing. [8] He was awarded a Bronze Medal from the U.S. Department of Commerce in 1997 for joint work on processing antenna measurements corrupted by errors in the positions of probes. [9]

Alpert received his Ph.D. from Yale University in 1990, under the supervision of Vladimir Rokhlin. [10] Alpert worked as a casualty actuary early in his career, and was a Hans Lewy postdoctoral fellow at Lawrence Berkeley National Laboratory and U.C. Berkeley. [11]

Related Research Articles

<span class="mw-page-title-main">Sine wave</span> Wave shaped like the sine function

A sine wave, sinusoidal wave, or sinusoid is a periodic wave whose waveform (shape) is the trigonometric sine function. In mechanics, as a linear motion over time, this is simple harmonic motion; as rotation, it corresponds to uniform circular motion. Sine waves occur often in physics, including wind waves, sound waves, and light waves, such as monochromatic radiation. In engineering, signal processing, and mathematics, Fourier analysis decomposes general functions into a sum of sine waves of various frequencies, relative phases, and magnitudes.

<span class="mw-page-title-main">Wave packet</span> Short "burst" or "envelope" of restricted wave action that travels as a unit

In physics, a wave packet is a short burst of localized wave action that travels as a unit, outlined by an envelope. A wave packet can be analyzed into, or can be synthesized from, a potentially-infinite set of component sinusoidal waves of different wavenumbers, with phases and amplitudes such that they interfere constructively only over a small region of space, and destructively elsewhere. Any signal of a limited width in time or space requires many frequency components around a center frequency within a bandwidth inversely proportional to that width; even a gaussian function is considered a wave packet because its Fourier transform is a "packet" of waves of frequencies clustered around a central frequency. Each component wave function, and hence the wave packet, are solutions of a wave equation. Depending on the wave equation, the wave packet's profile may remain constant or it may change while propagating.

<span class="mw-page-title-main">Wavefront</span> Locus of points at equal phase in a wave

In physics, the wavefront of a time-varying wave field is the set (locus) of all points having the same phase. The term is generally meaningful only for fields that, at each point, vary sinusoidally in time with a single temporal frequency.

<span class="mw-page-title-main">Finite-difference time-domain method</span> Numerical analysis technique

Finite-difference time-domain (FDTD) or Yee's method is a numerical analysis technique used for modeling computational electrodynamics. Since it is a time-domain method, FDTD solutions can cover a wide frequency range with a single simulation run, and treat nonlinear material properties in a natural way.

<span class="mw-page-title-main">Computational electromagnetics</span> Branch of physics

Computational electromagnetics (CEM), computational electrodynamics or electromagnetic modeling is the process of modeling the interaction of electromagnetic fields with physical objects and the environment using computers.

Computational aeroacoustics is a branch of aeroacoustics that aims to analyze the generation of noise by turbulent flows through numerical methods.

Electromagnetic field solvers are specialized programs that solve Maxwell's equations directly. They form a part of the field of electronic design automation, or EDA, and are commonly used in the design of integrated circuits and printed circuit boards. They are used when a solution from first principles or the highest accuracy is required.

<span class="mw-page-title-main">Meshfree methods</span> Methods in numerical analysis not requiring knowledge of neighboring points

In the field of numerical analysis, meshfree methods are those that do not require connection between nodes of the simulation domain, i.e. a mesh, but are rather based on interaction of each node with all its neighbors. As a consequence, original extensive properties such as mass or kinetic energy are no longer assigned to mesh elements but rather to the single nodes. Meshfree methods enable the simulation of some otherwise difficult types of problems, at the cost of extra computing time and programming effort. The absence of a mesh allows Lagrangian simulations, in which the nodes can move according to the velocity field.

The fast multipole method (FMM) is a numerical technique that was developed to speed up the calculation of long-ranged forces in the n-body problem. It does this by expanding the system Green's function using a multipole expansion, which allows one to group sources that lie close together and treat them as if they are a single source.

In the numerical solution of partial differential equations, a topic in mathematics, the spectral element method (SEM) is a formulation of the finite element method (FEM) that uses high-degree piecewise polynomials as basis functions. The spectral element method was introduced in a 1984 paper by A. T. Patera. Although Patera is credited with development of the method, his work was a rediscovery of an existing method

In physics and applied mathematics, analytical regularization is a technique used to convert boundary value problems which can be written as Fredholm integral equations of the first kind involving singular operators into equivalent Fredholm integral equations of the second kind. The latter may be easier to solve analytically and can be studied with discretization schemes like the finite element method or the finite difference method because they are pointwise convergent. In computational electromagnetics, it is known as the method of analytical regularization. It was first used in mathematics during the development of operator theory before acquiring a name.

<span class="mw-page-title-main">Solomon Mikhlin</span> Soviet mathematician

Solomon Grigor'evich Mikhlin was a Soviet mathematician of who worked in the fields of linear elasticity, singular integrals and numerical analysis: he is best known for the introduction of the symbol of a singular integral operator, which eventually led to the foundation and development of the theory of pseudodifferential operators.

Special functions are particular mathematical functions that have more or less established names and notations due to their importance in mathematical analysis, functional analysis, geometry, physics, or other applications.

<span class="mw-page-title-main">Schwarz's list</span>

In the mathematical theory of special functions, Schwarz's list or the Schwartz table is the list of 15 cases found by Hermann Schwarz when hypergeometric functions can be expressed algebraically. More precisely, it is a listing of parameters determining the cases in which the hypergeometric equation has a finite monodromy group, or equivalently has two independent solutions that are algebraic functions. It lists 15 cases, divided up by the isomorphism class of the monodromy group, and was first derived by Schwarz by methods of complex analytic geometry. Correspondingly the statement is not directly in terms of the parameters specifying the hypergeometric equation, but in terms of quantities used to describe certain spherical triangles.

The following timeline starts with the invention of the modern computer in the late interwar period.

In numerical mathematics, the regularized meshless method (RMM), also known as the singular meshless method or desingularized meshless method, is a meshless boundary collocation method designed to solve certain partial differential equations whose fundamental solution is explicitly known. The RMM is a strong-form collocation method with merits being meshless, integration-free, easy-to-implement, and high stability. Until now this method has been successfully applied to some typical problems, such as potential, acoustics, water wave, and inverse problems of bounded and unbounded domains.

<span class="mw-page-title-main">Weng Cho Chew</span> Malaysian-American electrical engineer

Weng Cho Chew is a Malaysian-American electrical engineer and applied physicist known for contributions to wave physics, especially computational electromagnetics. He is a Distinguished Professor of Electrical and Computer Engineering at Purdue University.

James Thomas Beale is an American mathematician, specializing in fluid dynamics, partial differential equations, and numerical analysis.

<span class="mw-page-title-main">Method of moments (electromagnetics)</span> Numerical method in computational electromagnetics

The method of moments (MoM), also known as the moment method and method of weighted residuals, is a numerical method in computational electromagnetics. It is used in computer programs that simulate the interaction of electromagnetic fields such as radio waves with matter, for example antenna simulation programs like NEC that calculate the radiation pattern of an antenna. Generally being a frequency-domain method, it involves the projection of an integral equation into a system of linear equations by the application of appropriate boundary conditions. This is done by using discrete meshes as in finite difference and finite element methods, often for the surface. The solutions are represented with the linear combination of pre-defined basis functions; generally, the coefficients of these basis functions are the sought unknowns. Green's functions and Galerkin method play a central role in the method of moments.

References

  1. Ruediger Jakob-Chien and Bradley K. Alpert, "A Fast Spherical Filter with Uniform Resolution," Journal of Computational Physics, Vol. 136, pp. 580-584, 1997.
  2. Bradley K. Alpert, Leslie Greengard, and Thomas Hagstrom, "Nonreflecting Boundary Conditions for the Time-Dependent Wave Equation," Journal of Computational Physics, Vol. 180, pp. 270-296, 2002.
  3. Bradley K. Alpert, Leslie Greengard, and Thomas Hagstrom, "Rapid Evaluation of Nonreflecting Boundary Kernels for Time-Domain Wave Propagation," SIAM Journal on Numerical Analysis, Vol. 37, pp. 1138-1164, 2000.
  4. Bradley K. Alpert, Leslie Greengard, and Thomas Hagstrom, "An Integral Evolution Formula for the Wave Equation," Journal of Computational Physics, Vol. 162, pp. 536-543, 2000.
  5. Bradley K. Alpert, "High-Order Quadratures for Integral Operators with Singular Kernels," Journal of Computational and Applied Mathematics, Vol. 60, pp. 367-378, 1995.
  6. Bradley K. Alpert, "Hybrid Gauss-Trapezoidal Quadrature Rules," SIAM Journal on Scientific Computing, Vol. 20, pp. 1551-1584, 1999.
  7. Selected publications
  8. Alpert receives 2006 Flemming Award
  9. Department of Commerce medal awards and NIST awards
  10. Bradley Alpert at the Mathematics Genealogy Project
  11. Dylan F. Williams, Bradley K. Alpert, Uwe Arz, David K. Walker, and Hartmut Grabinski, "Causal characteristic impedance of planar transmission lines," IEEE Transactions on Advanced Packaging, Vol. 26, pp. 165-171, 2003. (See the biographies at the end.)