Brazier effect

Last updated

The Brazier effect was first discovered in 1927 by Brazier. He showed that when an initially straight tube was bent uniformly, the longitudinal tension and compression which resist the applied bending moment also tend to flatten or ovalise the cross-section. As the curvature increases, the flexural stiffness decreases. Brazier showed that under steadily increasing curvature the bending moment reaches a maximum value. After the bending moment reaches its maximum value, the structure becomes unstable, and so the object suddenly forms a "kink". [1]

Tension (physics) pulling force transmitted axially by means of a string, cable, chain, or similar 1D continuous object, or by each end of a rod, truss member, or 3D object; action-reaction pair of forces acting at each end of said elements; opposite of compression

In physics, tension may be described as the pulling force transmitted axially by the means of a string, cable, chain, or similar one-dimensional continuous object, or by each end of a rod, truss member, or similar three-dimensional object; tension might also be described as the action-reaction pair of forces acting at each end of said elements. Tension could be the opposite of compression.

Curvature physical quantity

In mathematics, curvature is any of a number of loosely related concepts in different areas of geometry. Intuitively, curvature is the amount by which a geometric object such as a surface deviates from being a flat plane, or a curve from being straight as in the case of a line, but this is defined in different ways depending on the context. There is a key distinction between extrinsic curvature, which is defined for objects embedded in another space – in a way that relates to the radius of curvature of circles that touch the object – and intrinsic curvature, which is defined in terms of the lengths of curves within a Riemannian manifold.

Flexural rigidity is defined as the force couple required to bend a non-rigid structure in one unit of curvature or it can be defined as the resistance offered by a structure while undergoing bending.

From Brazier’s analysis it follows that the crushing pressure increases with the square of the curvature of the section, and thus with the square of the bending moment. [2]

Pressure Force distributed continuously over an area

Pressure is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure is the pressure relative to the ambient pressure.

See also

Related Research Articles

Airfoil

An airfoil or aerofoil is the cross-sectional shape of a wing, blade, or sail.

Beam (structure) structural element capable of withstanding load by resisting bending

A beam is a structural element that primarily resists loads applied laterally to the beam's axis. Its mode of deflection is primarily by bending. The loads applied to the beam result in reaction forces at the beam's support points. The total effect of all the forces acting on the beam is to produce shear forces and bending moments within the beam, that in turn induce internal stresses, strains and deflections of the beam. Beams are characterized by their manner of support, profile, length, and their material.

In science, buckling is a mathematical instability that leads to a failure mode.

Bending stress made by bending moment

In applied mechanics, bending characterizes the behavior of a slender structural element subjected to an external load applied perpendicularly to a longitudinal axis of the element.

The strength of ships is a topic of key interest to naval architects and shipbuilders. Ships which are built too strong are heavy, slow, and cost extra money to build and operate since they weigh more, whilst ships which are built too weakly suffer from minor hull damage and in some extreme cases catastrophic failure and sinking.

Meander A sinuous bend in a series in the channel of a river

A meander is one of a series of regular sinuous curves, bends, loops, turns, or windings in the channel of a river, stream, or other watercourse. It is produced by a stream or river swinging from side to side as it flows across its floodplain or shifts its channel within a valley. A meander is produced by a stream or river as it erodes the sediments comprising an outer, concave bank and deposits this and other sediment downstream on an inner, convex bank which is typically a point bar. The result of sediments being eroded from the outside concave bank and their deposition on an inside convex bank is the formation of a sinuous course as a channel migrates back and forth across the down-valley axis of a floodplain. The zone within which a meandering stream shifts its channel across either its floodplain or valley floor from time to time is known as a meander belt. It typically ranges from 15 to 18 times the width of the channel. Over time, meanders migrate downstream, sometimes in such a short time as to create civil engineering problems for local municipalities attempting to maintain stable roads and bridges.

Plastic bending

Plastic bending is a nonlinear behavior particular to members made of ductile materials that frequently achieve

In structural engineering, the plastic moment (Mp) is a property of a structural section. It is defined as the moment at which the entire cross section has reached its yield stress. This is theoretically the maximum bending moment that the section can resist - when this point is reached a plastic hinge is formed and any load beyond this point will result in theoretically infinite plastic deformation. In practice most materials are work-hardened resulting in increased stiffness and moment resistance until the material fails. This is of little significance in structural mechanics as the deflection prior to this occurring is considered to be an earlier failure point in the member.

Dynamic pressure is the increase in a moving fluid's pressure over its static value due to motion. In incompressible fluid dynamics, it is indicated as , or Q, defined by:

Bending moment

A bending moment is the reaction induced in a structural element when an external force or moment is applied to the element causing the element to bend. The most common or simplest structural element subjected to bending moments is the beam. The diagram shows a beam which is simply supported at both ends. Simply supported means that each end of the beam can rotate; therefore each end support has no bending moment. The ends can only react to the shear loads. Other beams can have both ends fixed; therefore each end support has both bending moment and shear reaction loads. Beams can also have one end fixed and one end simply supported. The simplest type of beam is the cantilever, which is fixed at one end and is free at the other end. In reality, beam supports are usually neither absolutely fixed nor absolutely rotating freely.

Neutral axis

The neutral axis is an axis in the cross section of a beam or shaft along which there are no longitudinal stresses or strains. If the section is symmetric, isotropic and is not curved before a bend occurs, then the neutral axis is at the geometric centroid. All fibers on one side of the neutral axis are in a state of tension, while those on the opposite side are in compression.

Influence line

In engineering, an influence line graphs the variation of a function at a specific point on a beam or truss caused by a unit load placed at any point along the structure. Some of the common functions studied with influence lines include reactions, shear, moment, and deflection (Deformation). Influence lines are important in designing beams and trusses used in bridges, crane rails, conveyor belts, floor girders, and other structures where loads will move along their span. The influence lines show where a load will create the maximum effect for any of the functions studied.

Minimum railway curve radius

The minimum railway curve radius is the shortest allowable design radius for the center line of railway tracks under a particular set of conditions. It has an important bearing on constructions costs and operating costs and, in combination with superelevation in the case of train tracks, determines the maximum safe speed of a curve. Minimum radius of curve is one parameter in the design of railway vehicles as well as trams. Monorails and guideways are also subject to minimum radii.

Lipid bilayer mechanics is the study of the physical material properties of lipid bilayers, classifying bilayer behavior with stress and strain rather than biochemical interactions. Local point deformations such as membrane protein interactions are typically modelled with the complex theory of biological liquid crystals but the mechanical properties of a homogeneous bilayer are often characterized in terms of only three mechanical elastic moduli: the area expansion modulus Ka, a bending modulus Kb and an edge energy . For fluid bilayers the shear modulus is by definition zero, as the free rearrangement of molecules within plane means that the structure will not support shear stresses. These mechanical properties affect several membrane-mediated biological processes. In particular, the values of Ka and Kb affect the ability of proteins and small molecules to insert into the bilayer. Bilayer mechanical properties have also been shown to alter the function of mechanically activated ion channels.

Membrane curvature is the geometrical measure or characterization of the curvature of membranes. The membranes can be naturally occurring or man-made (synthetic). An example of naturally occurring membrane is the lipid bilayer of cells, also known as cellular membranes. Synthetic membranes can be obtained by preparing aqueous solutions of certain lipids. The lipids will then "aggregate" and form various phases and structures. According to the conditions and the chemical structures of the lipid, different phases will be observed. For instance, the lipid POPC tends to form lamellar vesicles in solution, whereas smaller lipids, such as detergents, will form micelles if the CMC is reached.

Structural engineering theory

Structural engineering depends upon a detailed knowledge of loads, physics and materials to understand and predict how structures support and resist self-weight and imposed loads. To apply the knowledge successfully structural engineers will need a detailed knowledge of mathematics and of relevant empirical and theoretical design codes. They will also need to know about the corrosion resistance of the materials and structures, especially when those structures are exposed to the external environment.

Pure bending is a condition of stress where a bending moment is applied to a beam without the simultaneous presence of axial, shear, or torsional forces. Pure bending occurs only under a constant bending moment (M) since the shear force (V), which is equal to , has to be equal to zero. In reality, a state of pure bending does not practically exist, because such a state needs an absolutely weightless member. The state of pure bending is an approximation made to derive formulas.

The four-point bending flexural test provides values for the modulus of elasticity in bending , flexural stress , flexural strain and the flexural stress-strain response of the material. This test is very similar to the three-point bending flexural test. The major difference being that the addition of a fourth bearing brings a much larger portion of the beam to the maximum stress, as opposed to only the material right under the central bearing.

Span (engineering) distance between supports of an arch, bridge, etc.

Span is the distance between two intermediate supports for a structure, e.g. a beam or a bridge. A span can be closed by a solid beam or by a rope. The first kind is used for bridges, the second one for power lines, overhead telecommunication lines, some type of antennas or for aerial tramways.

References

  1. C. R. Calladine (1989). Theory of Shell Structures (reprint ed.). Cambridge University Press. p. 1150. ISBN   0-521-36945-2.
  2. "The Brazier Effect" . Retrieved 1 March 2012.[ permanent dead link ]