Brightseat Formation

Last updated

The Brightseat Formation is an exposure of marine sedimentary rock beds of Upper Cretaceous/Lower Paleocene age (65 MY to 55.5 MY), in Landover, Maryland. The exposure is located at Brightseat Road between Sheriff and Landover Roads. The site is currently owned by the Maryland-National Capital Park and Planning Commission. It was given its name by R.R. Bennett and G.G. Collins in 1952. [1]

Contents

According to the Maryland Geologic Survey, the exposure consists of "Gray to greenish-gray, micaceous, argillaceous, sparsely glauconitic, fine- to coarse-grained sand, locally indurated calcareous beds; phosphatic pebbles; thickness 0 to 20 feet." [2]

Research

Available research on the flora and fauna of the Brightseat Formation is decades-old. In 1968, thirty-five species of minute crustaceans, ostracodes, mostly cytheraceans, were found at outcrops of the Brightseat Formation, including 13 new species. [3] The presence of otoliths, calcareous secretions that accumulate within the auditory chambers of bony fish, indicate the presence of fish fauna in the formation. [4] The Brightseat Formation has also yielded three taxa of sea turtles: Taphrosphys sulfates (Leidy), Agomphus sp., and Osteopygis emarginatus Cope. [5]

Related Research Articles

The Wannagan Creek site is a fossil site found just west of the South Unit of Theodore Roosevelt National Park of North Dakota, US. The site is Paleocene in age, approximately 60 million years old. Paleontologists of the Science Museum of Minnesota have studied the site for nearly thirty years. The site is thought to represent a paleoenviroment of subtropical swampy lowland and forests. Preservation is excellent for both the flora and fauna of the site. Trace fossils of crocodilians and other vertebrates have also been discovered.

<i>Pristerognathus</i> Assemblage Zone

The Pristerognathus Assemblage Zone is a tetrapod assemblage zone or biozone which correlates to the upper Abrahamskraal Formation and lowermost Teekloof Formation, Adelaide Subgroup of the Beaufort Group, a fossiliferous and geologically important geological Group of the Karoo Supergroup in South Africa. The thickest outcrops, reaching not more than 300 metres (980 ft), occur just east of Sutherland through to Beaufort West in the south and Victoria West in the north. Exposures are also found west of Colesberg and south of Graaff-Reinet. The Pristerognathus Assemblage Zone is the third biozone of the Beaufort Group.

<span class="mw-page-title-main">Geology of Pennsylvania</span> Overview of the geology of the U.S. state of Pennsylvania

The Geology of Pennsylvania consists of six distinct physiographic provinces, three of which are subdivided into different sections. Each province has its own economic advantages and geologic hazards and plays an important role in shaping everyday life in the state. From the southeast corner to the northwest corner of the state, the include: the Atlantic Plain Province province, the Piedmont Province, the New England Province, the Ridge and Valley Province, the Appalachain Province, and the Central Lowlands Province.

<span class="mw-page-title-main">Aquia Formation</span>

The Aquia Formation is a geologic sandstone formation that extends from the upper Chesapeake Bay to the James River near Hopewell, Virginia. It consists of clayey, silty, very shelly, glauconitic sand. Fossil records indicate that this stratigraphic unit was created during the Paleocene.

<span class="mw-page-title-main">Reedsville Formation</span> Rock formation in the USA

The Ordovician Reedsville Formation is a mapped surficial bedrock unit in Pennsylvania, Maryland, Virginia, West Virginia, and Tennessee, that extends into the subsurface of Ohio. This rock is a slope-former adjacent to the prominent ridge-forming Bald Eagle sandstone unit in the Appalachian Mountains. It is often abbreviated Or on geologic maps.

The Mississippian Mauch Chunk Formation is a mapped bedrock unit in Pennsylvania, Maryland, and West Virginia. It is named for the township of Mauch Chunk, now known as borough of Jim Thorpe, Pennsylvania and for nearby Mauch Chunk Ridge where the formation crops out.

<span class="mw-page-title-main">North Horn Formation</span> Geological formation in Utah

The North Horn Formation is a widespread non-marine sedimentary unit with extensive outcrops exposed in central and eastern Utah. The formation locally exceeds 3,600 feet (1,100 m) in thickness and is characterized by fluvial, lacustrine, and floodplain dominated systems, representing a terrestrial, high energy, depositional environment. The sediments date from Late Cretaceous (Maastrichtian) to early Paleocene in age and include the K-Pg extinction event boundary; however, this boundary is extremely difficult to locate and there is no strong stratigraphic evidence available that indicates a specific marker bed such as an iridium rich clay layer. Thus far, the only visible evidence is represented in the form of faunal turnover from dinosaur to mammal-dominated fossil assemblages. Taxa from the Cretaceous part of the formation include squamates, testudines, choristoderes, crocodyliforms, sharks, bony fishes, amphibians, mammals, dinosaurs, eggshell fragments, trace fossils, mollusks, plant macrofossils, such as wood fragments, and palynomorphs.

The Denver Formation is a geological formation that is present within the central part of the Denver Basin that underlies the Denver, Colorado, area. It ranges in age from latest Cretaceous (Maastrichtian) to early Paleocene, and includes sediments that were deposited before, during and after the Cretaceous-Paleogene boundary event.

<span class="mw-page-title-main">Nacimiento Formation</span> A geologic formation in New Mexico

The Nacimiento Formation is a sedimentary rock formation found in the San Juan Basin of western New Mexico. It has an age of 61 to 65.7 million years, corresponding to the early and middle Paleocene. The formation has yielded an abundance of fossils from shortly after the Cretaceous-Paleogene extinction event that provide clues to the recovery and diversification of mammals following the extinction event.

<span class="mw-page-title-main">Straight Cliffs Formation</span> Geologic formation in south central Utah, USA

The Straight Cliffs Formation is a stratigraphic unit in the Kaiparowits Plateau of south central Utah. It is Late Cretaceous in age and contains fluvial, paralic, and marginal marine (shoreline) siliciclastic strata. It is well exposed around the margin of the Kaiparowits Plateau in the Grand Staircase – Escalante National Monument in south central Utah. The formation is named after the Straight Cliffs, a long band of cliffs creating the topographic feature Fiftymile Mountain.

<span class="mw-page-title-main">Edmonton Group</span>

Within the earth science of geology, the Edmonton Group is a Late Cretaceous to early Paleocene stratigraphic unit of the Western Canada Sedimentary Basin in the central Alberta plains. It was first described as the Edmonton Formation by Joseph Burr Tyrrell in 1887 based on outcrops along the North Saskatchewan River in and near the city of Edmonton. E.J.W. Irish later elevated the formation to group status and it was subdivided into four separate formations. In ascending order, they are the Horseshoe Canyon, Whitemud, Battle and Scollard Formations. The Cretaceous-Paleogene boundary occurs within the Scollard Formation, based on dinosaurian and microfloral evidence, as well as the presence of the terminal Cretaceous iridium anomaly.

<span class="mw-page-title-main">Cerrejón Formation</span>

The Cerrejón Formation is a geologic formation in Colombia dating back to the Middle-Late Paleocene. It is found in the El Cerrejón sub-basin of the Cesar-Ranchería Basin of La Guajira and Cesar. The formation consists of bituminous coal fields that are an important economic resource. Coal from the Cerrejón Formation is mined extensively from the Cerrejón open-pit coal mine, one of the largest in the world. The formation also bears fossils that are the earliest record of Neotropical rainforests.

<span class="mw-page-title-main">Salisbury Embayment</span> Prehistoric sea (65–5mya) over the United States East Coast

The Salisbury Embayment was an arm of the Atlantic Ocean which covered what is now Delaware, southern and eastern Maryland, the Virginia Peninsula and parts of southern New Jersey during Paleogene and Neogene times, from about 65 million to 5 million years ago. Sea level throughout most of this period stood several hundred feet higher than at present, and deposition of sediments draining off the continent possibly caused the underlying rocks to sink down, creating the embayment. The shore of the embayment lay inland at the present-day Fall Line in the region. Throughout the Paleogene and Neogene times, sediment accumulated on the floor of the Salisbury Embayment during pulses of high sea level, forming the Paleocene Aquia and Brightseat Formations, the Eocene Pamunkey Group, and the Miocene Chesapeake Group. There are no deposits from the Oligocene epoch due to a drop in sea level, however, a 2- to 3- mile diameter meteorite or asteroid is thought to have left a 50-mile diameter crater upon impact in the southern Chesapeake Bay.

<span class="mw-page-title-main">Surprise Canyon Formation</span> Landform in the Grand Canyon, Arizona

The Surprise Canyon Formation is a geologic formation that consists of clastic and calcareous sedimentary rocks that fill paleovalleys and paleokarst of Late Mississippian (Serpukhovian) age in Grand Canyon. These strata outcrop as isolated, lens-shaped exposures of rocks that fill erosional valleys and locally karsted topography and caves developed in the top of the Redwall Limestone. The Surprise Canyon Formation and associated unconformities represent a significant period of geologic time between the deposition of the Redwall Limestone and the overlying Supai Group.

<span class="mw-page-title-main">Dox Formation</span> Landform in the Grand Canyon, Arizona

The Dox Formation, also known as the Dox Sandstone, is a Mesoproterozoic rock formation that outcrops in the eastern Grand Canyon, Coconino County, Arizona. The strata of the Dox Formation, except for some more resistant sandstone beds, are relatively susceptible to erosion and weathering. The lower member of the Dox Formation consists of silty-sandstone and sandstone, and some interbedded argillaceous beds, that form stair-stepped, cliff-slope topography. The bulk of the Dox Formation typically forms rounded and sloping hill topography that occupies an unusually broad section of the canyon.

The Nanjemoy Formation is a geologic formation pertaining to both the Wilcox Group and the Pamunkey Group of the eastern United States, stretching across the states of Virginia, Maryland, and District of Columbia. The formation crops out east of the Appalachians and dates back to the Paleogene period. Specifically to the Ypresian stage of the Eocene epoch, about 55 to 50 Ma or Wasatchian in the NALMA classification, defined by the contemporaneous Wasatch Formation of the Pacific US coast.

<span class="mw-page-title-main">Graneros Shale</span> Geological formation

The Graneros Shale is a geologic formation in the United States identified in the Great Plains as well as New Mexico that dates to the Cenomanian Age of the Cretaceous Period. It is defined as the finely sandy argillaceous or clayey near-shore/marginal-marine shale that lies above the older, non-marine Dakota sand and mud, but below the younger, chalky open-marine shale of the Greenhorn. This definition was made in Colorado by G. K. Gilbert and has been adopted in other states that use Gilbert's division of the Benton's shales into Carlile, Greenhorn, and Graneros. These states include Kansas, Texas, Oklahoma, Nebraska, and New Mexico as well as corners of Minnesota and Iowa. North Dakota, South Dakota, Wyoming, and Montana have somewhat different usages — in particular, north and west of the Black Hills, the same rock and fossil layer is named Belle Fourche Shale.

<span class="mw-page-title-main">Wasatch Formation</span> Geologic formation in the western United States

The Wasatch Formation (Tw) is an extensive highly fossiliferous geologic formation stretching across several basins in Idaho, Montana Wyoming, Utah and western Colorado. It preserves fossils dating back to the Early Eocene period. The formation defines the Wasatchian or Lostcabinian, a period of time used within the NALMA classification, but the formation ranges in age from the Clarkforkian to Bridgerian.

The Poison Canyon Formation is a geologic formation in the Raton Basin of Colorado and New Mexico. The formation was deposited from the late Cretaceous through the Paleocene.

<span class="mw-page-title-main">Taranaki Basin</span> Onshore-offshore Cretaceous rift basin on the West Coast of New Zealand

The Taranaki Basin is an onshore-offshore Cretaceous rift basin on the West Coast of New Zealand. Development of rifting was the result of extensional stresses during the breakup of Gondwanaland. The basin later underwent fore-arc and intra-arc basin development, due to the subduction of the Pacific Plate under the Australian Plate at the Hikurangi Subduction System. The basin covers approximately 100,000 km2 of which the majority is offshore. The basin contains mostly marine sediment, with significant terrestrial sediment from the Late Cretaceous to the Eocene. The majority of New Zealand's oil and gas production occurs within the basin, with over 400 wells and approximately 20 oil and gas fields being drilled.

References

  1. Bennett, R.R., and Collins, G.G., 1952, Brightseat Formation, a new name for sediments of Paleocene age in Maryland: Journal of the Washington Academy of Sciences, v. 42, no. 4, p. 114–116.
  2. Maryland Geological Survey - Coastal Plain Rocks and Sediments 1968
  3. Journal of Paleontology v. 42 no. 1 p 100–142 January 1968
  4. Travisono, Jeanne. 1981. AAPG Bulletin Volume 65 p 656
  5. Weems, R. E. 1988. Paleocene turtles from the Aquia and Brightseat formations, with a discussion of their bearing on sea turtle evolution and phylogeny. Proceedings of the Biological Society of Washington 101:109–145.