Bronchoscopic lung volume reduction

Last updated

Bronchoscopic lung volume reduction(BLVR) is a procedure to reduce the volume of air within the lungs. BLVR was initially developed in the early 2000s [1] [2] as a minimally invasive treatment for severe COPD that is primarily caused by emphysema. BLVR evolved from earlier surgical approaches first developed in the 1950s [3] to reduce lung volume by removing damaged portions of the lungs via pneumonectomy or wedge resection. Procedures include the use of valves, coils, or thermal vapour ablation.[ citation needed ]

Contents

Procedures

BLVR involves the use of valves, coils, or thermal vapour ablation.[ citation needed ]

Valves

Endobronchial valves are inserted using a bronchoscope into sections of the lungs damaged by emphysema. Endobronchial valves are medical devices that allow air to exit these sections but not to re-enter. The valves, in effect, cause damaged lung tissue to deflate, thereby reducing the excessive lung volume (hyperinflation) caused by emphysema. Two endobronchial valves have been approved by the FDA for BLVR: Zephyr and Spiration.[ citation needed ]

Zephyr valve

Zephyr, manufactured by Pulmonx Corporation, obtained FDA approval in June, 2018, [4] after a clinical research trial (LIBERATE) [5] led by principal investigator Gerard Criner, MD, of Temple University Hospital.[ citation needed ]

In the trial, a total of 190 subjects were randomized across 24 hospital sites into two groups. One group received an endobronchial valve. The other received “standard of care” (SOC) under the current guidelines for hyperinflation due to emphysema. The trial found the endobronchial valve reduced residual lung volume and improved exercise tolerance as compared to the SOC group.[ citation needed ]

Spiration valve

Spiration, manufactured by Spiration, Inc., obtained FDA approval in December, 2018, [6] after a clinical trial (EMPROVE) [7] showed the valve improved pulmonary function scores among trial participants. The Spiration valve subsequently was first used in treatment by Dr. Criner at Temple University Hospital.[ citation needed ]

The procedure

BLVR valves are placed into the lungs using a catheter through a bronchoscope. During the one-hour procedure, the patient receives anesthesia through an intravenous line. After the procedure, patients usually remain in the hospital for at least four days. During hospitalization, the patient receives a series of chest X-rays to monitor the position of the valves. An outpatient follow-up appointment is scheduled for seven to 10 days after the procedure. Additional imaging tests, such as X-rays, and bronchoscopies may be required [8] weeks, months or years following the initial BLVR procedure.[ citation needed ]

Benefits and risks

BenefitsRisks
Improved lung function [9] COPD exacerbation [10]
Improved exercise tolerance [11] Respiratory failure [12]
ReversiblePneumothorax
Lower risk of injury and infection [13] Pneumonia

Clinical research has found that BLVR confers measurable benefits, including:

BLVR also carries risks, among them:

Research

The first clinical research study of BLVR valve implantation was published in The Lancet in 2003. [16] Since that time, nearly 80 additional papers have been published related to the efficacy [17] [18] of BLVR, inclusion criteria, [19] anesthesia management [20] during BLVR, effectiveness relative to lung volume reduction surgery [21] and related topics. Key studies include:

References

  1. Marruchella, Almerico; Faverio, Paola; Bonaiti, Giulia; Pesci, Alberto (October 2018). "History of lung volume reduction procedures". Journal of Thoracic Disease. 10 (Suppl 27): S3326 –S3334. doi: 10.21037/jtd.2018.04.165 . ISSN   2072-1439. PMC   6204342 . PMID   30450238.
  2. Sabanathan, S.; Richardson, J.; Pieri-Davies, S. (February 2003). "Bronchoscopic lung volume reduction". The Journal of Cardiovascular Surgery. 44 (1): 101–108. ISSN   0021-9509. PMID   12627080.
  3. DeCamp, Malcolm M.; McKenna, Robert J.; Deschamps, Claude C.; Krasna, Mark J. (2008-05-01). "Lung Volume Reduction Surgery". Proceedings of the American Thoracic Society. 5 (4): 442–446. doi:10.1513/pats.200803-023ET. ISSN   1546-3222. PMC   2645317 . PMID   18453353.
  4. Commissioner, Office of the (2020-02-20). "FDA approves novel device for treating breathing difficulty from severe emphysema". FDA. Archived from the original on December 15, 2019. Retrieved 2020-03-18.
  5. 1 2 3 Criner, Gerard J.; Sue, Richard; Wright, Shawn; Dransfield, Mark; Rivas-Perez, Hiram; Wiese, Tanya; Sciurba, Frank C.; Shah, Pallav L.; Wahidi, Momen M.; de Oliveira, Hugo Goulart; Morrissey, Brian (2018-11-01). "A Multicenter Randomized Controlled Trial of Zephyr Endobronchial Valve Treatment in Heterogeneous Emphysema (LIBERATE)" (PDF). American Journal of Respiratory and Critical Care Medicine. 198 (9): 1151–1164. doi:10.1164/rccm.201803-0590OC. ISSN   1535-4970. PMID   29787288. S2CID   46894678.
  6. Health, Center for Devices and Radiological (2019-12-20). "Spiration Valve® System - P180007". FDA. Archived from the original on September 23, 2020.
  7. Criner, G.j.; Delage, A.; Voelker, K.g.; for the EMPROVE Trial Investigator Group (2018-05-01), "The EMPROVE Trial - a Randomized, Controlled Multicenter Clinical Study to Evaluate the Safety and Effectiveness of the Spiration? Valve System for Single Lobe Treatment of Severe Emphysema", C24. NEW TECHNOLOGIES FOR MANAGING COPD, American Thoracic Society International Conference Abstracts, American Thoracic Society, pp. A7753, doi:10.1164/ajrccm-conference.2018.197.1_meetingabstracts.a7753 (inactive 11 July 2025), retrieved 2020-03-18{{citation}}: CS1 maint: DOI inactive as of July 2025 (link)
  8. 1 2 Klooster, Karin; Hartman, Jorine E.; ten Hacken, Nick H.T.; Slebos, Dirk-Jan (January 2017). "One-Year Follow-Up after Endobronchial Valve Treatment in Patients with Emphysema without Collateral Ventilation Treated in the STELVIO Trial". Respiration. 93 (2): 112–121. doi:10.1159/000453529. ISSN   0025-7931. PMC   5348732 . PMID   27974713.
  9. "Lung volume reduction procedures for emphysema". British Lung Foundation. 2015-12-07. Retrieved 2020-03-18.
  10. Fernandez-Bussy, Sebastian; Labarca, Gonzalo; Herth, Felix J. F. (2018). "Bronchoscopic Lung Volume Reduction in Patients with Severe Emphysema". Seminars in Respiratory and Critical Care Medicine. 39 (6): 685–692. doi:10.1055/s-0038-1676774. ISSN   1069-3424. PMID   30641586. S2CID   58559837.
  11. Lee, Eung Gu; Rhee, Chin Kook (2019-05-14). "Bronchoscopic lung volume reduction using an endobronchial valve to treat a huge emphysematous bullae: a case report". BMC Pulmonary Medicine. 19 (1): 92. doi: 10.1186/s12890-019-0849-z . ISSN   1471-2466. PMC   6518705 . PMID   31088437.
  12. Van Agteren, J. E.; Hnin, K.; Grosser, D.; Carson, K. V.; Smith, B. J. (2017). "Bronchoscopic lung volume reduction procedures for moderate to severe chronic obstructive pulmonary disease". The Cochrane Database of Systematic Reviews. 2017 (2): CD012158. doi:10.1002/14651858.CD012158.pub2. PMC   6464526 . PMID   28230230 . Retrieved 2020-03-18.
  13. Gordon, Matthew; Duffy, Sean; Criner, Gerard J. (August 2018). "Lung volume reduction surgery or bronchoscopic lung volume reduction: is there an algorithm for allocation?". Journal of Thoracic Disease. 10 (Suppl 23): S2816 –S2823. doi: 10.21037/jtd.2018.05.118 . ISSN   2072-1439. PMC   6129811 . PMID   30210836.
  14. 1 2 Criner, Gerard J.; Sue, Richard; Wright, Shawn; Dransfield, Mark; Rivas-Perez, Hiram; Wiese, Tanya; Sciurba, Frank C.; Shah, Pallav L.; Wahidi, Momen M.; de Oliveira, Hugo Goulart; Morrissey, Brian (2018-05-22). "A Multicenter Randomized Controlled Trial of Zephyr Endobronchial Valve Treatment in Heterogeneous Emphysema (LIBERATE)" (PDF). American Journal of Respiratory and Critical Care Medicine. 198 (9): 1151–1164. doi:10.1164/rccm.201803-0590OC. ISSN   1073-449X. PMID   29787288. S2CID   46894678.
  15. "Bronchoscopic Lung Volume Reduction Benefits and Risks". Temple Health. Retrieved 2020-03-18.
  16. "Bronchoscopic volume reduction with valve implants in patients with severe emphysema". 15 March 2003. Retrieved 11 February 2025.
  17. Kumar, Abhishek; Dy, Rajany; Singh, Kanwaljit; Jeffery Mador, M. (February 2017). "Early Trends in Bronchoscopic Lung Volume Reduction: A Systematic Review and Meta-analysis of Efficacy Parameters". Lung. 195 (1): 19–28. doi:10.1007/s00408-016-9969-x. ISSN   1432-1750. PMID   28005150. S2CID   1753916.
  18. Wang, Yong; Lai, Tian-Wen; Xu, Feng; Zhou, Jie-Sen; Li, Zhou-Yang; Xu, Xu-Chen; Chen, Hai-Pin; Ying, Song-Min; Li, Wen; Shen, Hua-Hao; Chen, Zhi-Hua (2017-09-29). "Efficacy and safety of bronchoscopic lung volume reduction therapy in patients with severe emphysema: a meta-analysis of randomized controlled trials". Oncotarget. 8 (44): 78031–78043. doi:10.18632/oncotarget.19352. ISSN   1949-2553. PMC   5652834 . PMID   29100445.
  19. May, Nadine; Niehaus-Gebele, Christa; Reichenberger, Frank; Behr, Jürgen; Gesierich, Wolfgang (February 2020). "Screening for Bronchoscopic Lung Volume Reduction: Reasons for Not Receiving Interventional Treatment". Lung. 198 (1): 221–228. doi:10.1007/s00408-019-00303-7. ISSN   1432-1750. PMID   31832749. S2CID   209331149.
  20. Grande, Bastian; Loop, Torsten (August 2018). "Anaesthesia management for bronchoscopic and surgical lung volume reduction". Journal of Thoracic Disease. 10 (Suppl 23): S2738 –S2743. doi: 10.21037/jtd.2018.02.46 . ISSN   2072-1439. PMC   6129807 . PMID   30210826.
  21. "Lung volume reduction surgery versus endobronchial valves: a randomised controlled trial". 27 April 2023. Retrieved 11 February 2025.
  22. "National Emphysema Treatment Trial (NETT) | National Heart, Lung, and Blood Institute (NHLBI)". www.nhlbi.nih.gov. Retrieved 2020-03-18.
  23. "Bronchoscopic lung volume reduction with endobronchial valves for patients with heterogeneous emphysema and intact interlobar fissures (the BeLieVeR-HIFi study): a randomised controlled trial". 12 Sep 2015. Retrieved 11 February 2025.
  24. Klooster, Karin; ten Hacken, Nick H.T.; Hartman, Jorine E.; Kerstjens, Huib A.M.; van Rikxoort, Eva M.; Slebos, Dirk-Jan (2015-12-10). "Endobronchial Valves for Emphysema without Interlobar Collateral Ventilation". New England Journal of Medicine. 373 (24): 2325–2335. doi: 10.1056/NEJMoa1507807 . hdl: 2066/152186 . ISSN   0028-4793. PMID   26650153.