Endobronchial valve

Last updated
Endobronchial valve Endobronchial valves placed in airways.png
Endobronchial valve

An endobronchial valve (EBV) is a small, one-way valve, which may be implanted in an airway feeding the lung or part of lung. The valve allows air to be breathed out of the section of lung supplied, and prevents air from being breathed in. This leaves the rest of the lung to expand more normally and avoid air-trapping. Endobronchial valves are typically implanted using a flexible delivery catheter advanced through a bronchoscope in minimally invasive bronchoscopic lung volume reduction procedures in the treatment of severe emphysema. The valves are also removable if they are not working properly.

Contents

Mechanism

The one-way endobronchial valve is typically implanted such that on exhalation air is able to flow through the valve and out of the lung compartment that is fed by that airway, but on inhalation, the valve closes and blocks air from entering that lung compartment. Thus, an implanted endobronchial valve typically helps a lung compartment to empty itself of air. This has been shown to be beneficial in the treatment of emphysema, where lungs lose their elasticity and thus cannot contract sufficiently to exhale air, leading to air trapping and hyperinflation. When one or more diseased portions of an emphysematous lung are made to deflate and collapse, other healthier portions of the lung have more room in the chest cavity to inhale and exhale, pressure is removed from the diaphragm, and even the heart may function better as the hyperinflated lung becomes smaller. [1] The amount of residual volume reduction achieved, correlates with the effects on FEV1, quality of life and exercise capacity. [2] Endobronchial valves have also been shown to be beneficial in treatment of persistent air leaks in the lungs. Their use in the treatment of tuberculosis and its complications has been studied resulting in promising outcomes but further studies are needed. [3] Endobronchial valves may be the first successful medical device treatment of emphysema, a disease that affects millions of people worldwide and has no known cure, being managed traditionally by lung transplantation and/or lung volume reduction surgery (though some people do not meet the eligibility requirements for one or both of these invasive procedures). [4] [5]

History

Although endobronchial isolation techniques for emphysema were developed in the early 2000s, [6] specific valves were developed primarily by the start-up medical device company Emphasys Medical (now Pulmonx - Redwood City, California) as a minimally invasive alternative to lung volume reduction surgery for emphysema. In lung volume reduction surgery, one or more diseased portion(s) of a lung are excised. Endobronchial valves were designed to replicate the effects of that procedure without requiring incisions, by simply allowing the most diseased portions of the lung to collapse. Emphasys was purchased by Pulmonx in 2009, and Pulmonx currently markets the Zephyr® endobronchial valve (developed by Emphasys) in Europe, Australia, China and many other locations outside the U.S. Pulmonx also sells the Chartis® Pulmonary Assessment System, which is an assessment tool used with endobronchial valves to help physicians target appropriate lung compartments for treatment. [7] Another company, Spiration (Seattle, Washington), developed a different type of endobronchial valve and was acquired by Olympus in 2010.

Related Research Articles

<span class="mw-page-title-main">Pneumothorax</span> Abnormal collection of air in the pleural space

A pneumothorax is an abnormal collection of air in the pleural space between the lung and the chest wall. Symptoms typically include sudden onset of sharp, one-sided chest pain and shortness of breath. In a minority of cases, a one-way valve is formed by an area of damaged tissue, and the amount of air in the space between chest wall and lungs increases; this is called a tension pneumothorax. This can cause a steadily worsening oxygen shortage and low blood pressure. This leads to a type of shock called obstructive shock, which can be fatal unless reversed. Very rarely, both lungs may be affected by a pneumothorax. It is often called a "collapsed lung", although that term may also refer to atelectasis.

<span class="mw-page-title-main">Barotrauma</span> Injury caused by pressure

Barotrauma is physical damage to body tissues caused by a difference in pressure between a gas space inside, or in contact with, the body and the surrounding gas or liquid. The initial damage is usually due to over-stretching the tissues in tension or shear, either directly by an expansion of the gas in the closed space or by pressure difference hydrostatically transmitted through the tissue. Tissue rupture may be complicated by the introduction of gas into the local tissue or circulation through the initial trauma site, which can cause blockage of circulation at distant sites or interfere with the normal function of an organ by its presence. The term is usually applied when the gas volume involved already exists prior to decompression. Barotrama can occur during both compression and decompression events.

<span class="mw-page-title-main">Pulmonology</span> Study of respiratory diseases

Pulmonology, pneumology or pneumonology is a medical specialty that deals with diseases involving the respiratory tract. It is also known as respirology, respiratory medicine, or chest medicine in some countries and areas.

<span class="mw-page-title-main">Cardiothoracic surgery</span> Medical specialty involved in surgical treatment of organs inside the thorax

Cardiothoracic surgery is the field of medicine involved in surgical treatment of organs inside the thoracic cavity — generally treatment of conditions of the heart, lungs, and other pleural or mediastinal structures.

<span class="mw-page-title-main">Parotitis</span> Medical condition

Parotitis is an inflammation of one or both parotid glands, the major salivary glands located on either side of the face, in humans. The parotid gland is the salivary gland most commonly affected by inflammation.

<span class="mw-page-title-main">Bronchopulmonary segment</span> Portion of lung supplied by a segmental bronchus

A bronchopulmonary segment is a portion of lung supplied by a specific segmental bronchus and its vessels. These arteries branch from the pulmonary and bronchial arteries, and run together through the center of the segment. Veins and lymphatic vessels drain along the edges of the segment. The segments are separated from each other by layers of connective tissue that forms them into discrete anatomical and functional units. This separation means that a bronchopulmonary segment can be surgically removed without affecting the function of the others.

<span class="mw-page-title-main">High-resolution computed tomography</span> Diagnostic imaging test

High-resolution computed tomography (HRCT) is a type of computed tomography (CT) with specific techniques to enhance image resolution. It is used in the diagnosis of various health problems, though most commonly for lung disease, by assessing the lung parenchyma. On the other hand, HRCT of the temporal bone is used to diagnose various middle ear diseases such as otitis media, cholesteatoma, and evaluations after ear operations.

<span class="mw-page-title-main">Obstructive lung disease</span> Category of respiratory disease characterized by airway obstruction

Obstructive lung disease is a category of respiratory disease characterized by airway obstruction. Many obstructive diseases of the lung result from narrowing (obstruction) of the smaller bronchi and larger bronchioles, often because of excessive contraction of the smooth muscle itself. It is generally characterized by inflamed and easily collapsible airways, obstruction to airflow, problems exhaling, and frequent medical clinic visits and hospitalizations. Types of obstructive lung disease include; asthma, bronchiectasis, bronchitis and chronic obstructive pulmonary disease (COPD). Although COPD shares similar characteristics with all other obstructive lung diseases, such as the signs of coughing and wheezing, they are distinct conditions in terms of disease onset, frequency of symptoms, and reversibility of airway obstruction. Cystic fibrosis is also sometimes included in obstructive pulmonary disease.

Lung cancer staging is the assessment of the extent to which a lung cancer has spread from its original source. As with most cancers, staging is an important determinant of treatment and prognosis. In general, more advanced stages of cancer are less amenable to treatment and have a worse prognosis.

<span class="mw-page-title-main">Subcutaneous emphysema</span> Medical condition

Subcutaneous emphysema occurs when gas or air accumulates and seeps under the skin, where normally no gas should be present. Subcutaneous refers to the subcutaneous tissue, and emphysema refers to trapped air pockets. Since the air generally comes from the chest cavity, subcutaneous emphysema usually occurs around the upper torso, such as on the chest, neck, face, axillae and arms, where it is able to travel with little resistance along the loose connective tissue within the superficial fascia. Subcutaneous emphysema has a characteristic crackling-feel to the touch, a sensation that has been described as similar to touching warm Rice Krispies. This sensation of air under the skin is known as subcutaneous crepitation, a form of crepitus.

<span class="mw-page-title-main">Acute exacerbation of chronic obstructive pulmonary disease</span> Medical condition

An acute exacerbation of chronic obstructive pulmonary disease, or acute exacerbations of chronic bronchitis (AECB), is a sudden worsening of chronic obstructive pulmonary disease (COPD) symptoms including shortness of breath, quantity and color of phlegm that typically lasts for several days.

<span class="mw-page-title-main">Chronic obstructive pulmonary disease</span> Lung disease involving long-term poor airflow

Chronic obstructive pulmonary disease (COPD) is a type of progressive lung disease characterized by long-term respiratory symptoms and airflow limitation. The main symptoms of COPD include shortness of breath and a cough, which may or may not produce mucus. COPD progressively worsens, with everyday activities such as walking or dressing becoming difficult. While COPD is incurable, it is preventable and treatable. The two most common types of COPD are emphysema and chronic bronchitis and have been the two classic COPD phenotypes. However, this basic dogma has been challenged as varying degrees of co-existing emphysema, chronic bronchitis, and potentially significant vascular diseases have all been acknowledged in those with COPD, giving rise to the classification of other phenotypes or subtypes. Emphysema is defined as enlarged airspaces (alveoli) whose walls have broken down resulting in permanent damage to the lung tissue. Chronic bronchitis is defined as a productive cough that is present for at least three months each year for two years. Both of these conditions can exist without airflow limitation when they are not classed as COPD. Emphysema is just one of the structural abnormalities that can limit airflow and can exist without airflow limitation in a significant number of people. Chronic bronchitis does not always result in airflow limitation but in young adults with chronic bronchitis who smoke, the risk of developing COPD is high. Many definitions of COPD in the past included emphysema and chronic bronchitis, but these have never been included in GOLD report definitions. Emphysema and chronic bronchitis remain the predominant phenotypes of COPD but there is often overlap between them and a number of other phenotypes have also been described. COPD and asthma may coexist and converge in some individuals. COPD is associated with low-grade systemic inflammation.

<span class="mw-page-title-main">Emphysema</span> Medical condition

Emphysema is any air-filled enlargement in the body's tissues. Most commonly emphysema refers to the enlargement of air spaces (alveoli) in the lungs, and is also known as pulmonary emphysema.

Interventional pulmonology is a maturing medical sub-specialty from its parent specialty of pulmonary medicine. It deals specifically with minimally invasive endoscopic and percutaneous procedures for diagnosis and treatment of neoplastic as well as non-neoplastic diseases of the airways, lungs, and pleura. Many IP procedures constitute efficacious yet less invasive alternatives to thoracic surgery.

<span class="mw-page-title-main">Bullectomy</span> Surgical removal of bullae from the lung

Bullectomy is a surgical procedure in which dilated air-spaces or bullae in lung parenchyma are removed. Common causes of dilated air-spaces include chronic obstructive pulmonary disease and emphysema. Patients with giant bullae filling half the thoracic volume and compressing relatively normal adjacent parenchyma are recommended for bullectomy. It is also indicated in severe dyspnea, repeated respiratory infections and spontaneous pneumothorax. The size of dilated air-spaces or bullae volume is the most important factor in relation to ventilator capacity post-bullectomy. In cases where the size of bullae are enlarged, bullectomy is indicated if the percentage of forced expiratory volume in one second(FEV1%) is greater than 40% and the regional ventilation over volume dynamic(V/V Dynamic) is greater than 0.5.

<span class="mw-page-title-main">Lung cavity</span> Medical condition

A lung cavity or pulmonary cavity is an abnormal, thick-walled, air-filled space within the lung. Cavities in the lung can be caused by infections, cancer, autoimmune conditions, trauma, congenital defects, or pulmonary embolism. The most common cause of a single lung cavity is lung cancer. Bacterial, mycobacterial, and fungal infections are common causes of lung cavities. Globally, tuberculosis is likely the most common infectious cause of lung cavities. Less commonly, parasitic infections can cause cavities. Viral infections almost never cause cavities. The terms cavity and cyst are frequently used interchangeably; however, a cavity is thick walled, while a cyst is thin walled. The distinction is important because cystic lesions are unlikely to be cancer, while cavitary lesions are often caused by cancer.

Bronchoscopic lung volume reduction(BLVR) is a procedure to reduce the volume of air within the lungs. BLVR was initially developed in the early 2000s as a minimally invasive treatment for severe COPD that is primarily caused by emphysema. BLVR evolved from earlier surgical approaches first developed in the 1950s to reduce lung volume by removing damaged portions of the lungs via pneumonectomy or wedge resection. Procedures include the use of valves, coils, or thermal vapour ablation.

<span class="mw-page-title-main">Orbital emphysema</span> Medical condition

Orbital emphysema is a medical condition that refers to the trapping of air within the loose subcutaneous around the orbit that is generally characterized by sudden onset swelling and bruising at the impacted eye, with or without deterioration of vision, which the severity depends on the density of air trapped under the orbital soft tissue spaces.

Collateral ventilation is a back-up system of alveolar ventilation that can bypass the normal route of airflow when airways are restricted or obstructed. The pathways involved include those between adjacent alveoli, between bronchioles and alveoli, and those between bronchioles . Collateral ventilation also serves to modulate imbalances in ventilation and perfusion a feature of many diseases. The pathways are altered in lung diseases particularly asthma, and emphysema. A similar functional pattern of collateralisation is seen in the circulatory system of the heart.

<span class="mw-page-title-main">Lung surgery</span>

Lung surgery is a type of thoracic surgery involving the repair or removal of lung tissue, and can be used to treat a variety of conditions ranging from lung cancer to pulmonary hypertension. Common operations include anatomic and nonanatomic resections, pleurodesis and lung transplants. Though records of lung surgery date back to the Classical Age, new techniques such as VATS continue to be developed.

References

  1. Ingenito, Edward P.; Tsai, Larry W. (2008). "Bronchoscopic Lung Volume Reduction". Thoracic Endoscopy: Advances in Interventional Pulmonology. pp. 188–197. doi:10.1002/9780470755969.ch12. ISBN   978-0-470-75596-9.
  2. Van Geffen, Wouter H.; Slebos, Dirk-Jan; Herth, Felix J.; Kemp, Samuel V.; Weder, Walter; Shah, Pallav L. (2019). "Surgical and endoscopic interventions that reduce lung volume for emphysema: A systemic review and meta-analysis" (PDF). The Lancet Respiratory Medicine. 7 (4): 313–324. doi:10.1016/S2213-2600(18)30431-4. PMID   30744937. S2CID   73428098.
  3. Corbetta, Lorenzo; Tofani, Ariela; Montinaro, Flavio; Michieletto, Lucio; Ceron, Loris; Moroni, Chiara; Rogasi, Pier Giorgio (2016). "Lobar Collapse Therapy Using Endobronchial Valves as a New Complementary Approach to Treat Cavities in Multidrug-Resistant Tuberculosis and Difficult-to-Treat Tuberculosis: A Case Series". Respiration. 92 (5): 316–328. doi:10.1159/000450757. hdl: 2158/1096761 . PMID   27728916. S2CID   640979 . Retrieved 16 August 2021.
  4. "Clinical Trial Examines Use of Valve for Treating Severe Emphysema" (Press release). Spiration. July 9, 2013. Retrieved February 16, 2019.
  5. Van Geffen, Wouter H.; Kerstjens, Huib A.M.; Slebos, Dirk-Jan (2017). "Emerging bronchoscopic treatments for chronic obstructive pulmonary disease" (PDF). Pharmacology & Therapeutics. 179: 96–101. doi: 10.1016/j.pharmthera.2017.05.007 . PMID   28527920.
  6. Sabanathan, S.; Richardson, J.; Pieri-Davies, S. (February 2003). "Bronchoscopic lung volume reduction". The Journal of Cardiovascular Surgery. 44 (1): 101–108. ISSN   0021-9509. PMID   12627080.
  7. Van Geffen, Wouter H.; Slebos, Dirk-Jan; Herth, Felix J.; Kemp, Samuel V.; Weder, Walter; Shah, Pallav L. (2019). "Surgical and endoscopic interventions that reduce lung volume for emphysema: A systemic review and meta-analysis" (PDF). The Lancet Respiratory Medicine. 7 (4): 313–324. doi:10.1016/s2213-2600(18)30431-4. PMID   30744937. S2CID   73428098.

Further reading