Bus monitoring

Last updated

Bus monitoring is a term used in flight testing when capturing data from avionics buses and networks in data acquisition telemetry systems. Commonly monitored avionics buses include

Avionics electronic systems used on aircraft, artificial satellites, and spacecraft

Avionics are the electronic systems used on aircraft, artificial satellites, and spacecraft. Avionic systems include communications, navigation, the display and management of multiple systems, and the hundreds of systems that are fitted to aircraft to perform individual functions. These can be as simple as a searchlight for a police helicopter or as complicated as the tactical system for an airborne early warning platform. The term avionics is a portmanteau of the words aviation and electronics.

Data acquisition all methods of simultaneous or sequential time measurement and counting for measurable or quantifiable data and groups of contiguous data

Data acquisition is the process of sampling signals that measure real world physical conditions and converting the resulting samples into digital numeric values that can be manipulated by a computer. Data acquisition systems, abbreviated by the acronyms DAS or DAQ, typically convert analog waveforms into digital values for processing. The components of data acquisition systems include:

Telemetry data and measurements transferred from a remote location to receiving equipment for monitoring

Telemetry is the collection of measurements or other data at remote or inaccessible points and their automatic transmission to receiving equipment for monitoring. The word is derived from Greek the roots tele, "remote", and metron, "measure". Systems that need external instructions and data to operate require the counterpart of telemetry, telecommand.

Contents

Aeronautical Radio, Incorporated (ARINC), established in 1929, was a major provider of transport communications and systems engineering solutions for eight industries: aviation, airports, defense, government, healthcare, networks, security, and transportation. ARINC had installed computer data networks in police cars and railroad cars and also maintains the standards for line-replaceable units.

ARINC 429, "Mark33 Digital Information Transfer System (DITS)," is also known as the Aeronautical Radio INC. (ARINC) technical standard for the predominant avionics data bus used on most higher-end commercial and transport aircraft. It defines the physical and electrical interfaces of a two-wire data bus and a data protocol to support an aircraft's avionics local area network.

Ethernet computer networking technology

Ethernet is a family of computer networking technologies commonly used in local area networks (LAN), metropolitan area networks (MAN) and wide area networks (WAN). It was commercially introduced in 1980 and first standardized in 1983 as IEEE 802.3, and has since retained a good deal of backward compatibility and been refined to support higher bit rates and longer link distances. Over time, Ethernet has largely replaced competing wired LAN technologies such as Token Ring, FDDI and ARCNET.

Typically a bus monitor must listen-only on the bus and intercept a copy of the messages on the bus. In general a bus monitor never transmits on the monitored bus. Once the bus monitor has intercepted a message, the message is made available to the rest of the data acquisition system for subsequent recording and/or analysis. [2]

There are three classes of bus monitor:

  1. Parser bus monitor
  2. Snarfer bus monitor
  3. Packetizer bus monitor

Parser bus monitor

Parser bus monitoring is also known as coherent monitoring or IRIG-106 Chapter 4 monitoring. [3] Parser bus monitors are suited to applications where the bus is highly active and only a few specific parameters of interest must be extracted.

The parser bus monitor uses protocol tracking to identify and classify messages on the bus. From the identified messages of interest, specific parameters can be extracted from the captured messages. In order to ensure that coherency is achieved whereby all extracted parameters are from the same message instance, the parameters must be triple buffered with stale and skipped indicators. Optionally time tags can be added to each parsed message.

Snarfer bus monitor

Snarfer bus monitoring is also known as FIFO or IRIG-106 Chapter 8 monitoring. [4] Snarfer bus monitors are suited to applications where all messages and traffic on the bus must be captured for processing, analysis, and recording.

A snarfer bus monitor captures all messages on the bus, tags them with a timestamp and content identifiers (for example Command or Status in the case of MIL-STD-1553 buses), and puts them into a FIFO.

Packetizer bus monitor

Packetizer bus monitors are designed for networked data acquisition systems where the acquired data from the avionics buses is captured and re-packetized in Ethernet frames for transmission to an analysis computer or network recorder. [5] [6] The packetizer bus monitor captures selected messages of interest (parsed) or all messages on the bus (snarfed) and packages the message in the payload of a UDP/IP packet. The application layer contains bus identifiers, sequence numbers and timestamps. The most popular application layer protocols used for networked data acquisition systems include the Airbus IENA format [7] and the iNET (integrated Network Enhanced Telemetry) TmNS (Telemetry Network System) format.

Airbus European aircraft manufacturer

Airbus SE is a European multinational aerospace corporation that stood as the world's second biggest aerospace and defence company in 2018. Registered in the Netherlands and trading shares in France, Germany and Spain, Airbus designs, manufactures and sells civil and military aerospace products worldwide and manufactures in the European Union and various other countries. The company has three divisions: Commercial Aircraft, Defence and Space, and Helicopters, the third being the largest in its industry in terms of revenues and turbine helicopter deliveries.

Related Research Articles

The Internet Control Message Protocol (ICMP) is a supporting protocol in the Internet protocol suite. It is used by network devices, including routers, to send error messages and operational information indicating success or failure when communicating with another IP address, for example, an error is indicated when a requested service is not available or that a host or router could not be reached. ICMP differs from transport protocols such as TCP and UDP in that it is not typically used to exchange data between systems, nor is it regularly employed by end-user network applications.

The Transmission Control Protocol (TCP) is one of the main protocols of the Internet protocol suite. It originated in the initial network implementation in which it complemented the Internet Protocol (IP). Therefore, the entire suite is commonly referred to as TCP/IP. TCP provides reliable, ordered, and error-checked delivery of a stream of octets (bytes) between applications running on hosts communicating via an IP network. Major internet applications such as the World Wide Web, email, remote administration, and file transfer rely on TCP. Applications that do not require reliable data stream service may use the User Datagram Protocol (UDP), which provides a connectionless datagram service that emphasizes reduced latency over reliability.

RapidIO electrical connection technology

The RapidIO architecture is a high-performance packet-switched interconnect technology. RapidIO supports messaging, read/write and cache coherency semantics. RapidIO fabrics guarantee in-order packet delivery, enabling power- and area- efficient protocol implementation in hardware. Based on industry-standard electrical specifications such as those for Ethernet, RapidIO can be used as a chip-to-chip, board-to-board, and chassis-to-chassis interconnect. The protocol is marketed as: RapidIO - the unified fabric for Performance Critical Computing, and is used in many applications such as Data Center & HPC, Communications Infrastructure, Industrial Automation and Military & Aerospace that are constrained by at least one of size, weight, and power (SWaP).

In the field of computer network administration, pcap is an application programming interface (API) for capturing network traffic. While the name is an abbreviation of the technical term of art (jargon) packet capture, that is not the API's proper name. Unix-like systems implement pcap in the libpcap library; for Windows, there is a port of libpcap named WinPcap that is no longer supported or developed, and a port named Npcap for Windows 7 and later that is still supported.

In computer networking, a reliable protocol is a protocol which notifies the sender whether or not the delivery of data to intended recipients was successful. Reliability is a synonym for assurance, which is the term used by the ITU and ATM Forum.

The Inter-Range Instrumentation Group (IRIG) is the standards body of the Range Commanders Council (RCC). The group publishes standards through the RCC Secretariat at White Sands Missile Range.

Bus analyzer

A bus analyzer is a type of a protocol analysis tool, used for capturing and analyzing communication data across a specific interface bus, usually embedded in a hardware system. The bus analyzer functionality helps design, test and validation engineers to check, test, debug and validate their designs throughout the design cycles of a hardware-based product. It also helps in later phases of a product life cycle, in examining communication interoperability between systems and between components, and clarifying hardware support concerns.

Avionics Full-Duplex Switched Ethernet (AFDX) is a data network, patented by international aircraft manufacturer Airbus, for safety-critical applications that utilizes dedicated bandwidth while providing deterministic quality of service (QoS). AFDX is a worldwide registered trademark by Airbus. The AFDX data network is based on Ethernet technology using commercial off-the-shelf (COTS) components. The AFDX data network is a specific implementation of ARINC Specification 664 Part 7, a profiled version of an IEEE 802.3 network per parts 1 & 2, which defines how commercial off-the-shelf networking components will be used for future generation Aircraft Data Networks (ADN). The six primary aspects of an AFDX data network include full duplex, redundancy, determinism, high speed performance, switched and profiled network.

Ethernet over USB means using USB as an Ethernet network. But it could also be interpreted to mean some Ethernet device which is connected over USB.

ANT is a proprietary multicast wireless sensor network technology designed and marketed by ANT Wireless. It is primarily used for sports and fitness sensors. ANT was introduced by Dynastream Innovations in 2003, followed by the low-power standard ANT+ in 2004, before Dynastream was bought by Garmin in 2006.

Microsoft Network Monitor is a deprecated packet analyzer. It enables capturing, viewing, and analyzing network data and deciphering network protocols. It can be used to troubleshoot network problems and applications on the network. Microsoft Network Monitor 1.0 was originally designed and developed by Raymond Patch, a transport protocol and network adapter device driver engineer on the Microsoft LAN Manager development team.

ARINC 818: Avionics Digital Video Bus (ADVB) is a video interface and protocol standard developed for high bandwidth, low latency, uncompressed digital video transmission in avionics systems. The standard, which was released in January 2007, has been advanced by ARINC and the aerospace community to meet the stringent needs of high performance digital video. The specification was updated and ARINC 818-2 was released in December 2013, adding a number of new features, including link rates up to 32X fibre channel rates, channel-bonding, switching, field sequential color, bi-directional control, and data only links.

CANaerospace CANaerospace

CANaerospace is a higher layer protocol based on Controller Area Network (CAN) which has been developed by Stock Flight Systems in 1998 for aeronautical applications.

CANalyzer is an analysis software tool from Vector Informatik GmbH. This development software is widely used, primarily by automotive and electronic control unit suppliers, to analyze the data traffic in serial bus systems. The most relevant bus systems here are CAN, LIN, FlexRay, Ethernet and MOST as well as CAN-based protocols such as J1939, CANopen, ARINC 825 and many more.

In telecommunication, a communication protocol is a system of rules that allow two or more entities of a communications system to transmit information via any kind of variation of a physical quantity. The protocol defines the rules, syntax, semantics and synchronization of communication and possible error recovery methods. Protocols may be implemented by hardware, software, or a combination of both.

XidML is an open standard XML tailored for the aerospace industry. XidML describes how data is acquired, processed and packaged for transmission, storage or reproduction. The primary objective of XidML is to store and exchange complex instrumentation information between multiple vendors and user-groups gathering thousands of parameters.

References

  1. "ARINC 429 Tutorial" (PDF). Condor Engineering. Archived from the original (PDF) on 2011-07-10. Retrieved 2011-02-28.
  2. "Metadata for Flight Test Instrumentation Systems".
  3. "IRIG-106 Chapter 4" (PDF). IRIG.
  4. "IRIG-106 Chapter 8" (PDF). IRIG.
  5. "Networked Data Acquisition" (PDF). Aerospace Testing.[ permanent dead link ]
  6. "Introduction to Networked Data Acquisition" (PDF). IRIG.[ permanent dead link ]
  7. "Conduct of Flight Tests and On-Board Computing for the A380". Archived from the original (PDF) on 2011-05-17.