This article needs additional citations for verification .(June 2024) |
CAVE-based authentication is a security protocol used to verify access in CDMA2000 1X, a type of third-generation (3G) mobile network system. The term "CAVE" stands for Cellular Authentication and Voice Encryption, which is the algorithm used to perform the authentication process. [1] This system helps to confirm that a user is authorized to connect to the mobile network.
It is also referred to as "HLR authentication" (Home Location Register authentication), "2G authentication," or "Access Authentication." In simpler terms, it ensures that the person trying to access the network is who they claim to be, protecting the network from unauthorized users.
In CAVE-based authentication, two main components work together when a user is roaming on a mobile network:
This system ensures that users can be securely authenticated even when they are using networks outside their home area.
In mobile network authentication, the authentication controller is responsible for determining whether the response from the Mobile Station (MS, or mobile phone) is correct. Depending on the situation, this controller can either be the Authentication Center (AC) in the user's home network or the Visitor Location Register (VLR) in the network the user is currently roaming in. This process uses two shared keys in CAVE-based authentication, which relies on the CAVE (Cellular Authentication and Voice Encryption) algorithm:
This process allows users to be securely authenticated without revealing the most sensitive key (A-key) to other networks.
CAVE-based authentication uses two types of challenges to verify the identity of a mobile phone (MS):
CAVE-based authentication is a one-way process, meaning the network always authenticates the mobile phone, but the phone does not authenticate the network. The only exception is during an SSD update, where the phone may challenge the base station.
CAVE-based authentication procedures are outlined in the TIA-41 standard, which is part of the specifications created by 3GPP2 (3rd Generation Partnership Project 2). These procedures explain how mobile phones and networks verify each other in CDMA-based systems, ensuring secure communication. TIA-41, also known as X.S0004, provides detailed guidelines for how this verification, or authentication, is performed using the CAVE algorithm.
The Global System for Mobile Communications (GSM) is a standard developed by the European Telecommunications Standards Institute (ETSI) to describe the protocols for second-generation (2G) digital cellular networks used by mobile devices such as mobile phones and tablets. GSM is also a trade mark owned by the GSM Association. GSM may also refer to the Full Rate voice codec.
The Universal Mobile Telecommunications System (UMTS) is a 3G mobile cellular system for networks based on the GSM standard. Developed and maintained by the 3GPP, UMTS is a component of the International Telecommunication Union IMT-2000 standard set and compares with the CDMA2000 standard set for networks based on the competing cdmaOne technology. UMTS uses wideband code-division multiple access (W-CDMA) radio access technology to offer greater spectral efficiency and bandwidth to mobile network operators.
An authenticator is a means used to confirm a user's identity, that is, to perform digital authentication. A person authenticates to a computer system or application by demonstrating that he or she has possession and control of an authenticator. In the simplest case, the authenticator is a common password.
A SIMcard is an integrated circuit (IC) intended to securely store an international mobile subscriber identity (IMSI) number and its related key, which are used to identify and authenticate subscribers on mobile telephone devices. SIMs are also able to store address book contacts information, and may be protected using a PIN code to prevent unauthorized use.
Interim Standard 95 (IS-95) was the first digital cellular technology that used code-division multiple access (CDMA). It was developed by Qualcomm and later adopted as a standard by the Telecommunications Industry Association in TIA/EIA/IS-95 release published in 1995. The proprietary name for IS-95 is cdmaOne.
Roaming is a wireless telecommunication term typically used with mobile devices, such as mobile phones. It refers to a mobile phone being used outside the range of its native network and connecting to another available cell network.
Mobility management is one of the major functions of a GSM or a UMTS network that allows mobile phones to work. The aim of mobility management is to track where the subscribers are, allowing calls, SMS and other mobile phone services to be delivered to them.
Network switching subsystem (NSS) is the component of a GSM system that carries out call out and mobility management functions for mobile phones roaming on the network of base stations. It is owned and deployed by mobile phone operators and allows mobile devices to communicate with each other and telephones in the wider public switched telephone network (PSTN). The architecture contains specific features and functions which are needed because the phones are not fixed in one location.
GSM services are a standard collection of applications and features available over the Global System for Mobile Communications (GSM) to mobile phone subscribers all over the world. The GSM standards are defined by the 3GPP collaboration and implemented in hardware and software by equipment manufacturers and mobile phone operators. The common standard makes it possible to use the same phones with different companies' services, or even roam into different countries. GSM is the world's most dominant mobile phone standard.
IEEE 802.11r-2008 or fast BSS transition (FT), is an amendment to the IEEE 802.11 standard to permit continuous connectivity aboard wireless devices in motion, with fast and secure client transitions from one Basic Service Set to another performed in a nearly seamless manner. It was published on July 15, 2008. IEEE 802.11r-2008 was rolled up into 802.11-2012. The terms handoff and roaming are often used, although 802.11 transition is not a true handoff/roaming process in the cellular sense, where the process is coordinated by the base station and is generally uninterrupted.
Authentication and Key Agreement (AKA) is a security protocol used in 3G networks. AKA is also used for one-time password generation mechanism for digest access authentication. AKA is a challenge–response based mechanism that uses symmetric cryptography.
Authentication, authorization, and accounting (AAA) is a framework used to control and track access within a computer network.
The Mobile Application Part (MAP) is an SS7 protocol that provides an application layer for the various nodes in GSM and UMTS mobile core networks and GPRS core networks to communicate with each other in order to provide services to users. The Mobile Application Part is the application-layer protocol used to access the Home Location Register, Visitor Location Register, Mobile Switching Center, Equipment Identity Register, Authentication Centre, Short message service center and Serving GPRS Support Node (SGSN).
GSM procedures are sets of steps performed by the GSM network and devices on it in order for the network to function. GSM is a set of standards for cell phone networks established by the European Telecommunications Standards Institute and first used in 1991. Its procedures refers to the steps a GSM network takes to communicate with cell phones and other mobile devices on the network. IMSI attach refers to the procedure used when a mobile device or mobile station joins a GSM network when it turns on and IMSI detach refers to the procedure used to leave or disconnect from a network when the device is turned off.
Phone cloning is the copying of identity from one cellular device to another.
IS-41, also known as ANSI-41, is a mobile, cellular telecommunications system standard to support mobility management by enabling the networking of switches. ANSI-41 is the standard now approved for use as the network-side companion to the wireless-side AMPS (analog), IS-136, cdmaOne, and CDMA2000 networks. It competes with GSM MAP, but the two will eventually merge to support worldwide roaming.
Generic Bootstrapping Architecture (GBA) is a technology that enables the authentication of a user. This authentication is possible if the user owns a valid identity on an HLR or on an HSS.
A CDMA subscriber identity module (CSIM) is an application to support CDMA2000 phones that runs on a UICC, with a file structure derived from the R-UIM card. By porting the application to the UICC, a card with CSIM, SIM, and USIM can operate with all major cellular technologies worldwide. The CSIM application allows users to change phones by simply removing the smart card from one mobile phone and inserting it into another mobile phone or broadband telephony device supporting the CDMA2000 radio interface.
The Mobile Telephone Switching Office (MTSO) is the mobile equivalent of a PSTN Central Office. The MTSO contains the switching equipment or Mobile Switching Center (MSC) for routing mobile phone calls. It also contains the equipment for controlling the cell sites that are connected to the MSC.