CC398

Last updated

CC398 or MRSA CC398 is a new variant of MRSA that has emerged in animals and is found in intensively reared production animals (primarily pigs, but also cattle and poultry), where it can be transmitted to humans as LA-MRSA (livestock-associated MRSA). A 2009 study shows, however, that dissemination of CC398 from exposed humans to other, non-exposed humans is infrequent. [1] Though dangerous to humans, CC398 is often asymptomatic in food-producing animals. [2] In a single study conducted in Denmark, MRSA was shown to originate in livestock and spread to humans, [3] though the MRSA strain may have originated in humans and was transmitted to livestock. [4]

A 2011 study reported 47% of the meat and poultry sold in surveyed U.S. grocery stores was contaminated with S. aureus, and of those 5–24.4% of the total were resistant to at least three classes of antibiotics. "Now we need to determine what this means in terms of risk to the consumer," said Dr. Keim, a co-author of the paper. [5] Some samples of commercially sold meat products in Japan were also found to harbor MRSA strains. [6]

An investigation of 100 pig-meat samples purchased from major UK retailers conducted by the Guardian in 2015 showed that some 10% of the samples were contaminated. [7]

In 2017 17 out of 401 examined horses in Denmark were found to carry MRSA, typically strains of CC398. [8] The same year it was reported that from 20142016 44 persons in Denmark were infected with LA-MRSA from fur farming mink and that LA-MRSA was found in 88% of Danish pig herds. [9]

See also

Related Research Articles

<i>Staphylococcus aureus</i> Species of Gram-positive bacterium

Staphylococcus aureus is a Gram-positive spherically shaped bacterium, a member of the Bacillota, and is a usual member of the microbiota of the body, frequently found in the upper respiratory tract and on the skin. It is often positive for catalase and nitrate reduction and is a facultative anaerobe that can grow without the need for oxygen. Although S. aureus usually acts as a commensal of the human microbiota, it can also become an opportunistic pathogen, being a common cause of skin infections including abscesses, respiratory infections such as sinusitis, and food poisoning. Pathogenic strains often promote infections by producing virulence factors such as potent protein toxins, and the expression of a cell-surface protein that binds and inactivates antibodies. S. aureus is one of the leading pathogens for deaths associated with antimicrobial resistance and the emergence of antibiotic-resistant strains, such as methicillin-resistant S. aureus (MRSA), is a worldwide problem in clinical medicine. Despite much research and development, no vaccine for S. aureus has been approved.

Methicillin-resistant <i>Staphylococcus aureus</i> Bacterium responsible for difficult-to-treat infections in humans

Methicillin-resistant Staphylococcus aureus (MRSA) is a group of gram-positive bacteria that are genetically distinct from other strains of Staphylococcus aureus. MRSA is responsible for several difficult-to-treat infections in humans. It caused more than 100,000 deaths worldwide attributable to antimicrobial resistance in 2019.

<span class="mw-page-title-main">Methicillin</span> Antibiotic medication

Methicillin (USAN), also known as meticillin (INN), is a narrow-spectrum β-lactam antibiotic of the penicillin class.

Vancomycin-resistant <i>Staphylococcus aureus</i> Antibiotica resistant bacteria

Vancomycin-resistant Staphylococcus aureus (VRSA) are strains of Staphylococcus aureus that have acquired resistance to the glycopeptide antibiotic vancomycin. Bacteria can acquire resistant genes either by random mutation or through the transfer of DNA from one bacterium to another. Resistance genes interfere with the normal antibiotic function and allow a bacteria to grow in the presence of the antibiotic. Resistance in VRSA is conferred by the plasmid-mediated vanA gene and operon. Although VRSA infections are uncommon, VRSA is often resistant to other types of antibiotics and a potential threat to public health because treatment options are limited. VRSA is resistant to many of the standard drugs used to treat S. aureus infections. Furthermore, resistance can be transferred from one bacterium to another.

<span class="mw-page-title-main">Panton–Valentine leukocidin</span>

Panton–Valentine leukocidin (PVL) is a cytotoxin—one of the β-pore-forming toxins. The presence of PVL is associated with increased virulence of certain strains (isolates) of Staphylococcus aureus. It is present in the majority of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) isolates studied and is the cause of necrotic lesions involving the skin or mucosa, including necrotic hemorrhagic pneumonia. PVL creates pores in the membranes of infected cells. PVL is produced from the genetic material of a bacteriophage that infects Staphylococcus aureus, making it more virulent.

<span class="mw-page-title-main">Cefoxitin</span> Chemical compound

Cefoxitin is a second-generation cephamycin antibiotic developed by Merck & Co., Inc. from Cephamycin C in the year following its discovery, 1972. It was synthesized in order to create an antibiotic with a broader spectrum. It is often grouped with the second-generation cephalosporins. Cefoxitin requires a prescription and as of 2010 is sold under the brand name Mefoxin by Bioniche Pharma, LLC. The generic version of cefoxitin is known as cefoxitin sodium.

<span class="mw-page-title-main">Intensive animal farming</span> Branch of agriculture

Intensive animal farming, industrial livestock production, and macro-farms, also known as factory farming, is a type of intensive agriculture, specifically an approach to animal husbandry designed to maximize production while minimizing costs. To achieve this, agribusinesses keep livestock such as cattle, poultry, and fish at high stocking densities, at large scale, and using modern machinery, biotechnology, and global trade. The main products of this industry are meat, milk and eggs for human consumption. There are issues regarding whether intensive animal farming is sustainable in the social long-run given its costs in resources. Analysts also raise issues about its ethics.

<span class="mw-page-title-main">Ceftobiprole</span> Chemical compound

Ceftobiprole (Zevtera/Mabelio) is a fifth-generation cephalosporin for the treatment of hospital-acquired pneumonia and community-acquired pneumonia. It is marketed by Basilea Pharmaceutica in the United Kingdom, Germany, Switzerland and Austria under the trade name Zevtera, in France and Italy under the trade name Mabelio. Like other cephalosporins, ceftobiprole exerts its antibacterial activity by binding to important penicillin-binding proteins and inhibiting their transpeptidase activity which is essential for the synthesis of bacterial cell walls. Ceftobiprole has high affinity for penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus strains and retains its activity against strains that express divergent mecA gene homologues. Ceftobiprole also binds to penicillin-binding protein 2b in Streptococcus pneumoniae (penicillin-intermediate), to penicillin-binding protein 2x in Streptococcus pneumoniae (penicillin-resistant), and to penicillin-binding protein 5 in Enterococcus faecalis.

<span class="mw-page-title-main">ST8:USA300</span> Strain of bacteria

ST8:USA300 is a strain of community-associated methicillin-resistant Staphylococcus aureus (MRSA) that has emerged as a particularly antibiotic resistant epidemic that is responsible for rapidly progressive, fatal diseases including necrotizing pneumonia, severe sepsis and necrotizing fasciitis. The epidemiology of infections caused by MRSA is rapidly changing: in the past 10 years, infections caused by this organism have emerged in the community. The 2 MRSA clones in the United States most closely associated with community outbreaks, USA400 and USA300, often contain Panton-Valentine leukocidin (PVL) genes and, more frequently, have been associated with skin and soft tissue infections. Outbreaks of community-associated (CA)-MRSA infections have been reported in correctional facilities, among athletic teams, among military recruits, in newborn nurseries, and among sexually active men who have sex with men, CA-MRSA infections now appear to be endemic in many urban regions and cause most MRSA infections.

<span class="mw-page-title-main">Staphylococcal infection</span> Medical condition

A staphylococcal infection or staph infection is an infection caused by members of the Staphylococcus genus of bacteria.

mecA is a gene found in bacterial cells which allows them to be resistant to antibiotics such as methicillin, penicillin and other penicillin-like antibiotics.

SCCmec, or staphylococcal cassette chromosome mec, is a mobile genetic element of Staphylococcus bacterial species. This genetic sequence includes the mecA gene coding for resistance to the antibiotic methicillin and is the only known way for Staphylococcus strains to spread the gene in the wild by horizontal gene transfer. SCCmec is a 21 to 60 kb long genetic element that confers broad-spectrum β-lactam resistance to MRSA. Moreover, additional genetic elements like Tn554, pT181, and pUB110 can be found in SCCmec, which have the capability to render resistance to various non-β-lactam drugs.

Staphylococcus delphini is a Gram-positive, coagulase-positive member of the bacterial genus Staphylococcus consisting of single, paired, and clustered cocci. Strains of this species were originally isolated from aquarium-raised dolphins suffering from skin lesions.

<span class="mw-page-title-main">Anthracimycin</span> Polyketide

Anthracimycin is a polyketide antibiotic discovered in 2013. Anthracimycin is derived from marine actinobacteria. In preliminary laboratory research, it has shown activity against Bacillus anthracis, the bacteria that causes anthrax, and against methicillin-resistant Staphylococcus aureus (MRSA).

Staphylococcus schleiferi is a Gram-positive, cocci-shaped bacterium of the family Staphylococcaceae. It is facultatively anaerobic, coagulase-variable, and can be readily cultured on blood agar where the bacterium tends to form opaque, non-pigmented colonies and beta (β) hemolysis. There exists two subspecies under the species S. schleiferi: Staphylococcus schleiferi subsp. schleiferi and Staphylococcus schleiferi subsp. coagulans.

Staphylococcus pseudintermedius is a gram positive coccus bacteria of the genus Staphylococcus found worldwide. It is primarily a pathogen for domestic animals, but has been known to affect humans as well. S. pseudintermedius is an opportunistic pathogen that secretes immune modulating virulence factors, has many adhesion factors, and the potential to create biofilms, all of which help to determine the pathogenicity of the bacterium. Diagnoses of Staphylococcus pseudintermedius have traditionally been made using cytology, plating, and biochemical tests. More recently, molecular technologies like MALDI-TOF, DNA hybridization and PCR have become preferred over biochemical tests for their more rapid and accurate identifications. This includes the identification and diagnosis of antibiotic resistant strains.

<span class="mw-page-title-main">Antibiotic use in livestock</span> Use of antibiotics for any purpose in the husbandry of livestock

Antibiotic use in livestock is the use of antibiotics for any purpose in the husbandry of livestock, which includes treatment when ill (therapeutic), treatment of a group of animals when at least one is diagnosed with clinical infection (metaphylaxis), and preventative treatment (prophylaxis). Antibiotics are an important tool to treat animal as well as human disease, safeguard animal health and welfare, and support food safety. However, used irresponsibly, this may lead to antibiotic resistance which may impact human, animal and environmental health.

<span class="mw-page-title-main">Tara C. Smith</span> American epidemiologist and science communicator

Tara C. Smith is an American epidemiologist and science communicator. She is a professor at the Kent State University College of Public Health who studies zoonotic infections. Smith was the first to identify strains of methicillin-resistant Staphylococcus aureus associated with livestock in the United States.

An occupational infectious disease is an infectious disease that is contracted at the workplace. Biological hazards (biohazards) include infectious microorganisms such as viruses, bacteria and toxins produced by those organisms such as anthrax.

MRSA ST398 is a specific strain of Methicillin-resistant Staphylococcus aureus (MRSA). Staphylococcus aureus is a gram-positive, spherical bacterium that can cause a range of infections in humans and animals. And Methicillin-resistant Staphylococcus aureus (MRSA) is a bacterium that is resistant to many antibiotics. The abbreviation "ST" in MRSA ST398 refers to the sequence type of the bacterium. MRSA ST398 is a clonal complex 398 (CC398). This means that the strain had emerged in a human clinic, without any obvious or understandable causes. MRSA ST398, a specific strain of MRSA, is commonly found in livestock, and can cause infections in humans who come into contact with infected animals.

References

  1. Cuny C, Nathaus R, Layer F, Strommenger B, Altmann D, Witte W (2009). "Nasal Colonization of Humans with Methicillin-Resistant Staphylococcus aureus (MRSA) CC398 with and without Exposure to Pigs". PLOS ONE. 4 (8): e6800. Bibcode:2009PLoSO...4.6800C. doi: 10.1371/journal.pone.0006800 . PMC   2728842 . PMID   19710922.
  2. "Joint scientific report of ECDC, EFSA and EMEA on meticillin resistant Staphylococcus aureus (MRSA) in livestock, companion animals and food. | EFSA". www.efsa.europa.eu. 16 June 2009.
  3. Harrison EM, Paterson GK, Holden MT, Larsen J, Stegger M, Larsen AR, Petersen A, Skov RL, et al. (2013). "Whole genome sequencing identifies zoonotic transmission of MRSA isolates with the novel mecA homologue mecC". EMBO Molecular Medicine. 5 (4): 509–15. doi:10.1002/emmm.201202413. PMC   3628104 . PMID   23526809.
  4. Tomasz A (April 2013). "The use of whole genome sequencing to solve an epidemiological puzzle". EMBO Molecular Medicine. 5 (4): 486–487. doi:10.1002/emmm.201302622. PMC   3628098 . PMID   23554168.
  5. "US meat and poultry is widely contaminated with drug-resistant Staph bacteria, study finds". ScienceDaily.
  6. Ogata K, Narimatsu H, Suzuki M, Higuchi W, Yamamoto T, Taniguchi H (3 February 2012). "Commercially distributed meat as a potential vehicle for community-acquired methicillin-resistant Staphylococcus aureus". Applied and Environmental Microbiology. 78 (8): 2797–802. Bibcode:2012ApEnM..78.2797O. doi:10.1128/AEM.07470-11. PMC   3318828 . PMID   22307310.
  7. Harvey F, Wasley A, Stuart C, Carson M, O'Kane M, Mann B, Baqué I, Lukic D, Parkar Y (18 June 2015). "The pig superbug and the baby – video". The Guardian.
  8. Lindtoft CB (18 April 2017). "MRSA-bakterier er fundet i 17 danske heste" [MRSA bacteria found in 17 Danish horses]. Politiken (in Danish). Retrieved 18 April 2017.
  9. "44 personer smittet med husdyr-MRSA fra mink på tre år" [44 persons infected with livestock MRSA from mink in three years]. Ritzau (in Danish). 2 March 2017. Retrieved 18 April 2017 via Politiken.