CDMA subscriber identity module

Last updated

A CDMA subscriber identity module (CSIM) is an application to support CDMA2000 phones that runs on a UICC, with a file structure derived from the R-UIM card. By porting the application to the UICC (Universal Integrated Circuit Card), a card with CSIM, SIM, and USIM can operate with all major cellular technologies worldwide. The CSIM application allows users to change phones by simply removing the smart card from one mobile phone and inserting it into another mobile phone or broadband telephony device supporting the CDMA2000 radio interface. [1] [2]

CSIM application file system

The CSIM application contains a file system with a number of parameters needed to operate on cdmaOne/CDMA2000 ("CDMA") networks. Each parameter, or a group of related parameters, is specified with a unique identifier with an implicit or explicit length, and is considered a separate Elementary File (EF). The following examples are taken from the 3GPP2 specification. [1]

Related Research Articles

SMS Text messaging service component

SMS is a text messaging service component of most telephone, Internet, and mobile device systems. It uses standardized communication protocols to enable mobile devices to exchange short text messages. An intermediary service can facilitate a text-to-voice conversion to be sent to landlines.

The Universal Mobile Telecommunications System (UMTS) is a third generation mobile cellular system for networks based on the GSM standard. Developed and maintained by the 3GPP, UMTS is a component of the International Telecommunications Union IMT-2000 standard set and compares with the CDMA2000 standard set for networks based on the competing cdmaOne technology. UMTS uses wideband code division multiple access (W-CDMA) radio access technology to offer greater spectral efficiency and bandwidth to mobile network operators.

The international mobile subscriber identity (IMSI) is a number that uniquely identifies every user of a cellular network. It is stored as a 64-bit field and is sent by the mobile device to the network. It is also used for acquiring other details of the mobile in the home location register (HLR) or as locally copied in the visitor location register. To prevent eavesdroppers from identifying and tracking the subscriber on the radio interface, the IMSI is sent as rarely as possible and a randomly-generated TMSI is sent instead.

SIM card Integrated circuit card for a mobile device

A subscriber identity module or subscriber identification module (SIM), widely known as a SIM card, is an integrated circuit that is intended to securely store the international mobile subscriber identity (IMSI) number and its related key, which are used to identify and authenticate subscribers on mobile telephony devices. It is also possible to store contact information on many SIM cards. SIM cards are always used on GSM phones; for CDMA phones, they are needed only for LTE-capable handsets. SIM cards can also be used in satellite phones, smart watches, computers, or cameras.

3G is the third generation of wireless mobile telecommunications technology. It is the upgrade for 2.5G and 2.5G GPRS networks, for faster data transfer. This is based on a set of standards used for mobile devices and mobile telecommunications use services and networks that comply with the International Mobile Telecommunications-2000 (IMT-2000) specifications by the International Telecommunication Union. 3G finds application in wireless voice telephony, mobile Internet access, fixed wireless Internet access, video calls and mobile TV.

The International Mobile Equipment Identity (IMEI) is a number, usually unique, to identify 3GPP and iDEN mobile phones, as well as some satellite phones. It is usually found printed inside the battery compartment of the phone, but can also be displayed on-screen on most phones by entering *#06# MMI Supplementary Service code on the dialpad, or alongside other system information in the settings menu on smartphone operating systems.

Binary Runtime Environment for Wireless

Binary Runtime Environment for Wireless is an application development platform created by Qualcomm, originally for code division multiple access (CDMA) mobile phones, featuring third-party applications such as mobile games. It is offered in some feature phones but not in smartphones. Developed in 1999, as a platform for wireless applications on CDMA-based mobile phones, it debuted in September 2001. As a software platform that can download and run small programs for playing games, sending messages, and sharing photos, the main advantage of Brew MP is that the application developers can easily port their applications among all Brew MP devices by providing a standardized set of application programming interfaces. Software for Brew MP enabled handsets can be developed in C or C++ using the freely downloadable Brew MP software development kit (SDK). The Brew runtime library is part of the wireless device on-chip firmware or operating system to allow programmers to develop applications without needing to code for system interface or understand wireless applications. Brew is described as a pseudo operating system, but not a true mobile operating system. Brew is not a virtual machine such as Java ME, but runs native code.

The Preferred Roaming List (PRL) is a database residing in a wireless device, such as a cellphone, that contains information used during the system selection and acquisition process. In the case of R-UIM-based CDMA devices, the PRL resides on the R-UIM. The PRL indicates which bands, sub bands, and service provider identifiers will be scanned and in what priority order. Without a PRL, the device may not be able to roam, i.e. obtain service outside of the home area. There may be cases where missing or corrupt PRLs can lead to a customer not having service at all.

The IP Multimedia Subsystem or IP Multimedia Core Network Subsystem (IMS) is an architectural framework for delivering IP multimedia services. Historically, mobile phones have provided voice call services over a circuit-switched-style network, rather than strictly over an IP packet-switched network. Alternative methods of delivering voice (VoIP) or other multimedia services have become available on smartphones, but they have not become standardized across the industry. IMS is an architectural framework to provide such standardization.

Universal integrated circuit card Smart card used to uniquely identify a mobile device on a cellular network

The universal integrated circuit card (UICC), also known as a SIM card, is the smart card used in mobile terminals in GSM and UMTS networks. The UICC ensures the integrity and security of all kinds of personal data, and it typically holds a few hundred kilobytes.

Authentication and Key Agreement (AKA) is a security protocol used in 3G networks. AKA is also used for one-time password generation mechanism for digest access authentication. AKA is a challenge-response based mechanism that uses symmetric cryptography.

Mobile phone features

The features of mobile phones are the set of capabilities, services and applications that they offer to their users. Mobile phones are often referred to as feature phones, and offer basic telephony. Handsets with more advanced computing ability through the use of native code try to differentiate their own products by implementing additional functions to make them more attractive to consumers. This has led to great innovation in mobile phone development over the past 20 years.

Removable User Identity Module

Removable User Identity Module is a card developed for cdmaOne/CDMA2000 ("CDMA") handsets that extends the GSM SIM card to CDMA phones and networks. To work in CDMA networks, the R-UIM contains an early version of the CSIM application. The card also contains SIM (GSM) application, so it can work on both networks. It is physically compatible with GSM SIMs and can fit into existing GSM phones as it is an extension of the GSM 11.11 standard.

A mobile equipment identifier (MEID) is a globally unique number identifying a physical piece of CDMA2000 mobile station equipment. The number format is defined by the 3GPP2 report S.R0048 but in practical terms, it can be seen as an IMEI but with hexadecimal digits.

Femtocell Small, low-power cellular base station

In telecommunications, a femtocell is a small, low-power cellular base station, typically designed for use in a home or small business. A broader term which is more widespread in the industry is small cell, with femtocell as a subset. It is also called femto AccessPoint (AP). It connects to the service provider's network via broadband ; current designs typically support four to eight simultaneously active mobile phones in a residential setting depending on version number and femtocell hardware, and eight to sixteen mobile phones in enterprise settings. A femtocell allows service providers to extend service coverage indoors or at the cell edge, especially where access would otherwise be limited or unavailable. Although much attention is focused on WCDMA, the concept is applicable to all standards, including GSM, CDMA2000, TD-SCDMA, WiMAX and LTE solutions.

Phone cloning is the copying of identity from one cellular device to another.

A UIMID is a 32-bit Electronic Serial Number (ESN) stored in a R-UIM or CSIM used for TDMA or CDMA2000 phones. It is given a different name to avoid confusion with the hardware ESN stored in the phone. In all known systems the UIMID displaces the ESN in signaling. Because the UIMID is allocated from the same numbering space as ESN its existence is transparent to the network. The reason the UIMID is transmitted instead of the ESN is because the card contains the MIN or IMSI and devices such as the HLR running the Asbi

EUIMID is a unique identifier for an R-UIM or CSIM card in CDMA2000 cellular systems that replaces the older UIMID identifier. There are two forms of EUIMID, known as Short Form (SF_EUIMID) and Long Form (LF_EUIMID). Both produce a 32-bit pseudo-UIMID (pUIMID) with 0x80 in the upper 8 bits and the least significant 24 bits of the SHA-1 hash of the entire SF_EUIMID or the entire ICCID EF in the lower 24 bits.

The (U)SIM interface is the connecting point of the mobile phone and the UICC with its SIM or USIM application.

References

  1. 1 2 C.S0065-B v2.0. cdma2000 Application on UICC for Spread Spectrum Systems. 3GPP2. 2011. http://www.3gpp2.org/Public_html/specs/C.S0065-B_v2.0_CSIM.pdf Archived 2011-09-27 at the Wayback Machine .
  2. UICC-Terminal interface Physical and Logical Characteristics for cdma2000 Spread Spectrum Systems. 3GPP2. 2010. http://www.3gpp2.org/Public_html/specs/C.S0074-A_v1.0_UICC-100625.pdf Archived 2012-05-27 at the Wayback Machine .