Universal integrated circuit card

Last updated
A smart card taken from a GSM mobile phone Sim card.png
A smart card taken from a GSM mobile phone
X-Ray of a SIM card showing small rectangular semiconductor chip (central small rectangle) and five bond wires leading to the connection pads SIM-DXAI20210313172217.jpg
X-Ray of a SIM card showing small rectangular semiconductor chip (central small rectangle) and five bond wires leading to the connection pads
A 25 x 15 mm Vodafone New Zealand SIM card Vodafone New Zealand SIM circa 2002.jpeg
A 25 × 15 mm Vodafone New Zealand SIM card

The universal integrated circuit card (UICC) is the smart card (integrated circuit card) used in mobile terminals in 2G (GSM), 3G (UMTS), 4G (LTE), and 5G networks. The UICC ensures the integrity and security of all kinds of personal data, and it typically holds a few hundred kilobytes. [1]

Contents

The official definition for UICC is found in ETSI TR 102 216, where it is defined as a "smart card that conforms to the specifications written and maintained by the ETSI Smart Card Platform project". In addition, the definition has a note that states that "UICC is neither an abbreviation nor an acronym". [2]

NIST SP 800-101 Rev. 1 and NIST Computer Security Resource Center Glossary state that, "A UICC may be referred to as a SIM, USIM, RUIM or CSIM, and is used interchangeably with those terms", [3] [4] though this is an over-simplification. The primary component of a UICC is a SIM card.[ citation needed ]

Design

A UICC consists of a CPU, ROM, RAM, EEPROM and I/O circuits. Early versions consisted of the whole full-size (85 × 54 mm, ISO/IEC 7810 ID-1) smart card. Soon the race for smaller telephones called for a smaller version of the card. The card was cropped down to 25 × 15 mm (ISO/IEC 7810 ID-000), as illustrated.

2G versus 3G

In 2G networks, the SIM card and SIM application were bound together, so that "SIM card" could mean the physical card, or any physical card with the SIM application.

In a GSM network, the UICC contains a SIM application and in a UMTS network, it contains a USIM application. A UICC may contain several applications, making it possible for the same smart card to give access to both GSM and UMTS networks, and also provide storage of a phone book and other applications. It is also possible to access a GSM network using a USIM application and it is possible to access UMTS networks using a SIM application with mobile terminals prepared for this. With the UMTS release 5 a new application, the IP multimedia Services Identity Module (ISIM) is required for services in the IMS. The telephone book is a separate application and not part of either subscriber identity module.

In a cdmaOne/CDMA2000 ("CDMA") network, the UICC contains a CSIM application, in addition to 3GPP USIM and SIM applications. A card with all 3 features is called a removable user identity card, or R-UIM. Thus, the R-UIM card can be inserted into CDMA, GSM, or UMTS handsets, and will work in all three cases.

In 3G networks, it is a mistake to speak of a USIM, CSIM, or SIM card, as all three are applications running on a UICC card.

Usage

Since the card slot is standardized, a subscriber can easily move their wireless account and phone number from one handset to another. This will also transfer their phone book and text messages. Similarly, usually a subscriber can change carriers by inserting a new carrier's UICC card into their existing handset. However, it is not always possible because some carriers (e.g., in U.S.) SIM-lock the phones that they sell, preventing rival carriers' cards from being used.

The use and content of the card can be protected by use of PIN codes. One code, PIN1, can be defined to control normal use of the phone. Another code, PIN2, can be set, to allow the use of special functions (like limiting outbound telephone calls to a list of numbers). PUK1 and PUK2 is used to reset PIN1 and PIN2 respectively.

The integration of the ETSI framework and the Application management framework of GlobalPlatform is standardized in the UICC configuration. [5]

Related Research Articles

<span class="mw-page-title-main">GSM</span> Cellular telephone network standard

The Global System for Mobile Communications (GSM) is a standard developed by the European Telecommunications Standards Institute (ETSI) to describe the protocols for second-generation (2G) digital cellular networks used by mobile devices such as mobile phones and tablets. GSM is also a trade mark owned by the GSM Association. GSM may also refer to the Full Rate voice codec.

The Universal Mobile Telecommunications System (UMTS) is a third generation mobile cellular system for networks based on the GSM standard. Developed and maintained by the 3GPP, UMTS is a component of the International Telecommunication Union IMT-2000 standard set and compares with the CDMA2000 standard set for networks based on the competing cdmaOne technology. UMTS uses wideband code-division multiple access (W-CDMA) radio access technology to offer greater spectral efficiency and bandwidth to mobile network operators.

In telecommunication, a public land mobile network (PLMN) is a combination of wireless communication services offered by a specific operator in a specific country. A PLMN typically consists of several cellular technologies like GSM/2G, UMTS/3G, LTE/4G, NR/5G, offered by a single operator within a given country, often referred to as a cellular network.

The international mobile subscriber identity is a number that uniquely identifies every user of a cellular network. It is stored as a 64-bit field and is sent by the mobile device to the network. It is also used for acquiring other details of the mobile in the home location register (HLR) or as locally copied in the visitor location register. To prevent eavesdroppers from identifying and tracking the subscriber on the radio interface, the IMSI is sent as rarely as possible and a randomly-generated TMSI is sent instead.

<span class="mw-page-title-main">SIM card</span> Integrated circuit card for a mobile device

A SIMcard is an integrated circuit (IC) intended to securely store an international mobile subscriber identity (IMSI) number and its related key, which are used to identify and authenticate subscribers on mobile telephone devices. Technically the actual physical card is known as a universal integrated circuit card (UICC); this smart card is usually made of PVC with embedded contacts and semiconductors, with the SIM as its primary component. In practice the term "SIM card" is still used to refer to the entire unit and not simply the IC.

<span class="mw-page-title-main">3G</span> Third generation of wireless mobile telecommunications technology

3G is the third generation of wireless mobile telecommunications technology. It is the upgrade over 2G, 2.5G, GPRS and 2.75G Enhanced Data Rates for GSM Evolution networks, offering faster data transfer, and better voice quality. This network was superseded by 4G, and later on by 5G. This network is based on a set of standards used for mobile devices and mobile telecommunications use services and networks that comply with the International Mobile Telecommunications-2000 (IMT-2000) specifications by the International Telecommunication Union. 3G finds application in wireless voice telephony, mobile Internet access, fixed wireless Internet access, video calls and mobile TV.

<span class="mw-page-title-main">Cellular network</span> Communication network

A cellular network or mobile network is a telecommunications network where the link to and from end nodes is wireless and the network is distributed over land areas called cells, each served by at least one fixed-location transceiver. These base stations provide the cell with the network coverage which can be used for transmission of voice, data, and other types of content. A cell typically uses a different set of frequencies from neighboring cells, to avoid interference and provide guaranteed service quality within each cell.

<span class="mw-page-title-main">Unstructured Supplementary Service Data</span> Communications protocol

Unstructured Supplementary Service Data (USSD), sometimes referred to as "quick codes" or "feature codes", is a communications protocol used by GSM cellular telephones to communicate with the mobile network operator's computers. USSD can be used for WAP browsing, prepaid callback service, mobile-money services, location-based content services, menu-based information services, and as part of configuring the phone on the network. The service does not require a messaging app, and does not incur charges.

TracFone Wireless, Inc. (TFWI) is an American prepaid, no-contract mobile phone provider. TFWI is a subsidiary of Verizon Communications, and offers products and services under several brands. It operates as a mobile virtual network operator (MVNO), holding agreements with the three largest United States wireless network operators to provide service: AT&T Mobility, T-Mobile US, and Verizon.

Authentication and Key Agreement (AKA) is a security protocol used in 3G networks. AKA is also used for one-time password generation mechanism for digest access authentication. AKA is a challenge–response based mechanism that uses symmetric cryptography.

An international mobile subscriber identity-catcher, or IMSI-catcher, is a telephone eavesdropping device used for intercepting mobile phone traffic and tracking location data of mobile phone users. Essentially a "fake" mobile tower acting between the target mobile phone and the service provider's real towers, it is considered a man-in-the-middle (MITM) attack. The 3G wireless standard offers some risk mitigation due to mutual authentication required from both the handset and the network. However, sophisticated attacks may be able to downgrade 3G and LTE to non-LTE network services which do not require mutual authentication.

An IP Multimedia Services Identity Module (ISIM) is an application residing on the UICC, an IC card specified in TS 31.101. This module could be on a UMTS 3G or IMS VoLTE network. It contains parameters for identifying and authenticating the user to the IMS. The ISIM application can co-exist with SIM and USIM on the same UICC making it possible to use the same smartcard in both GSM networks and earlier releases of UMTS.

<span class="mw-page-title-main">Motorola StarTAC</span> Mobile phone

The StarTAC is a series of mobile phones released by Motorola starting in 1996. It is the successor of the MicroTAC, a semi-clamshell design first launched in 1989. Whereas the MicroTAC's flip folded down from below the keypad, the StarTAC folded up from above the display. The StarTAC was among the first mobile phones to gain widespread consumer adoption; approximately 60 million StarTACs were sold.

<span class="mw-page-title-main">Removable User Identity Module</span>

Removable User Identity Module is a card developed for cdmaOne/CDMA2000 ("CDMA") handsets that extends the GSM SIM card to CDMA phones and networks. To work in CDMA networks, the R-UIM contains an early version of the CSIM application. The card also contains SIM (GSM) application, so it can work on both networks. It is physically compatible with GSM SIMs and can fit into existing GSM phones as it is an extension of the GSM 11.11 standard.

SIM Application Toolkit (STK) is a standard of the GSM system which enables the subscriber identity module to initiate actions which can be used for various value-added services. Similar standards exist for other network and card systems, with the USIM Application Toolkit (USAT) for USIMs used by newer-generation networks being an example. A more general name for this class of Java Card-based applications running on UICC cards is the Card Application Toolkit (CAT).

<span class="mw-page-title-main">Mobile phone signal</span> Signal strength received by a phone from a network

A mobile phone signal is the signal strength received by a mobile phone from a cellular network. Depending on various factors, such as proximity to a tower, any obstructions such as buildings or trees, etc. this signal strength will vary. Most mobile devices use a set of bars of increasing height to display the approximate strength of this received signal to the mobile phone user. Traditionally five bars are used.

A CDMA subscriber identity module (CSIM) is an application to support CDMA2000 phones that runs on a UICC, with a file structure derived from the R-UIM card. By porting the application to the UICC, a card with CSIM, SIM, and USIM can operate with all major cellular technologies worldwide. The CSIM application allows users to change phones by simply removing the smart card from one mobile phone and inserting it into another mobile phone or broadband telephony device supporting the CDMA2000 radio interface.

<span class="mw-page-title-main">Mobile phone</span> Portable device to make telephone calls using a radio link

A mobile phone is a portable telephone that can make and receive calls over a radio frequency link while the user is moving within a telephone service area, as opposed to a fixed-location phone. The radio frequency link establishes a connection to the switching systems of a mobile phone operator, which provides access to the public switched telephone network (PSTN). Modern mobile telephone services use a cellular network architecture, and therefore mobile telephones are called cellphones in North America. In addition to telephony, digital mobile phones support a variety of other services, such as text messaging, multimedia messaging, email, Internet access, short-range wireless communications, satellite access, business applications, payments, multimedia playback and streaming, digital photography, and video games. Mobile phones offering only basic capabilities are known as feature phones ; mobile phones that offer greatly advanced computing capabilities are referred to as smartphones.

The (U)SIM interface is the connecting point of the mobile phone and the UICC with its SIM or USIM application.

<span class="mw-page-title-main">Voice over LTE</span> High-speed wireless communication functionality

Voice over LTE (VoLTE) is an LTE high-speed wireless communication standard for voice calls using mobile phones and data terminals. VoLTE has up to three times more voice and data capacity than older 3G UMTS and up to six times more than 2G GSM. It uses less bandwidth because VoLTE's packet headers are smaller than those of unoptimized VoIP/LTE. VoLTE calls are usually charged at the same rate as other calls.

References

  1. Asif, Saad Z. (2011). Next Generation Mobile Communications Ecosystem. John Wiley & Sons. p. 306. ISBN   978-1119995814.
  2. "ETSI TR 102 216" (PDF). Retrieved 25 June 2014.
  3. Ayers, Rick; Brothers, Sam; Jansen, Wayne (2014). "NIST SP 800-101 Rev. 1". nist.gov. National Information Technology Laboratory. doi:10.6028/NIST.SP.800-101r1.
  4. "Universal Integrated Circuit Card". NIST CRISC Glossary. NIST. Retrieved 14 Sep 2022.
  5. Ericsson, Daniel (January 2011). "The OTA Platform in the World of LTE" (PDF). carabinerpr.com. Giesecke & Devrient. Retrieved 5 January 2013.