CROS hearing aid

Last updated

A contralateral routing of signals (CROS) [1] hearing aid is a type of hearing aid that is used to treat a condition in which the patient has no usable hearing in one ear and minimal hearing loss or normal hearing in the other ear. This is referred to as single sided deafness.

Contents

Mechanism

The CROS hearing aid takes sound from the ear with poorer hearing and transmits to the ear with better hearing. The goal of this device is to give the patient two-sided hearing when true bilateral hearing is not possible. The CROS system is an alternative to traditional unilateral hearing aid fittings in which the patient receives no information from the side with hearing loss. [2]

Most systems are now wireless and are either behind the ear or custom built in-the-ear systems. These wireless systems have replaced earlier wired units which were bulky and rather fussy. Few people found them beneficial, and by contrast the wireless are easier to use and to wear. [3] There are also systems incorporated into eyeglasses. If hearing loss exists in the better ear then a system in the good ear that combines the function of a regular hearing aid with that of a CROS aid is recommended. This configuration is called a BiCROS system.

Current CROS devices utilize wireless streaming to transmit the signal from the poor ear to the better hearing ear. This is accomplished by near field induction or radio waves. [2]

Configuration

Air conduction CROS systems

On the impaired side, a microphone is encased in a behind the ear (BTE) styled case or a custom, in the ear (ITE) piece. The receiver is on good ear.

BiCROS system

This system is utilized in patients who have Single Sided Deafness who also have hearing loss in their better hearing ear. In addition to the configuration included in the CROS system, the BiCROS includes microphones on the better hearing side and both microphones are amplified and presented to the better hearing ear. [2] [ neutrality is disputed ]

Transcranial CROS system

In this configuration, the signal is transmitted through the skull via bone conduction. There are two methods for this:

Direct bone conduction transducers

A bone oscillator is placed on the mastoid of the skull on the worse ear, either using a surgically embedded abutment (with external sound processor held on by a percutaneous abutment or a magnet implanted under the skin) or physically held on with a headband. Sound is transmitted through the skull to the better ear.

Bone conduction via air conduction transducer

The signal is presented to the poor ear at a level loud enough to cross over to the better hearing ear via bone conduction. A powerful hearing aid is fit deeply in the ear canal to produce enough sound. This option may be preferable due to the single unit that is used, leaving the better ear unrestricted. [2] [ neutrality is disputed ]

Notes

  1. Harford, E., Barry, J. (1965). A rehabilitative approach to the problem of unilateral hearing impairment: Contralateral routing of signals (CROS). J Speech Hear Dis, 30, 121-138.
  2. 1 2 3 4 Ricketts, Todd; Bentler, Ruth; Mueller, Gustav (2017). "Hearing Aid Styles and Fitting Applications". Essentials of Modern Hearing Aids: Selection, Fitting, Verification. San Diego, California: Plural Publishing. pp. 258–260. ISBN   9781597568531.
  3. "CROS hearing aids". hearpeers. Archived from the original on 7 June 2016. Retrieved 12 June 2016.

Related Research Articles

<span class="mw-page-title-main">Headphones</span> Device placed near the ears that plays sound

Headphones are a pair of small loudspeaker drivers worn on or around the head over a user's ears. They are electroacoustic transducers, which convert an electrical signal to a corresponding sound. Headphones let a single user listen to an audio source privately, in contrast to a loudspeaker, which emits sound into the open air for anyone nearby to hear. Headphones are also known as earphones or, colloquially, cans. Circumaural and supra-aural headphones use a band over the top of the head to hold the speakers in place. Another type, known as earbuds or earpieces consist of individual units that plug into the user's ear canal. A third type are bone conduction headphones, which typically wrap around the back of the head and rest in front of the ear canal, leaving the ear canal open. In the context of telecommunication, a headset is a combination of headphone and microphone.

<span class="mw-page-title-main">Anotia</span> Medical condition

Anotia describes a rare congenital deformity that involves the complete absence of the pinna, the outer projected portion of the ear, and narrowing or absence of the ear canal. This contrasts with microtia, in which a small part of the pinna is present. Anotia and microtia may occur unilaterally or bilaterally. This deformity results in conductive hearing loss, deafness.

<span class="mw-page-title-main">Vestibulocochlear nerve</span> Cranial nerve VIII, for hearing and balance

The vestibulocochlear nerve or auditory vestibular nerve, also known as the eighth cranial nerve, cranial nerve VIII, or simply CN VIII, is a cranial nerve that transmits sound and equilibrium (balance) information from the inner ear to the brain. Through olivocochlear fibers, it also transmits motor and modulatory information from the superior olivary complex in the brainstem to the cochlea.

<span class="mw-page-title-main">Hearing aid</span> Electroacoustic device

A hearing aid is a device designed to improve hearing by making sound audible to a person with hearing loss. Hearing aids are classified as medical devices in most countries, and regulated by the respective regulations. Small audio amplifiers such as personal sound amplification products (PSAPs) or other plain sound reinforcing systems cannot be sold as "hearing aids".

Bone conduction is the conduction of sound to the inner ear primarily through the bones of the skull, allowing the hearer to perceive audio content without blocking the ear canal. Bone conduction transmission occurs constantly as sound waves vibrate bone, specifically the bones in the skull, although it is hard for the average individual to distinguish sound being conveyed through the bone as opposed to the sound being conveyed through the air via the ear canal. Intentional transmission of sound through bone can be used with individuals with normal hearing — as with bone-conduction headphones — or as a treatment option for certain types of hearing impairment. Bone generally conveys lower-frequency sounds better than higher frequency sounds.

<span class="mw-page-title-main">Conductive hearing loss</span> Medical condition

Conductive hearing loss (CHL) occurs when there is a problem transferring sound waves anywhere along the pathway through the outer ear, tympanic membrane (eardrum), or middle ear (ossicles). If a conductive hearing loss occurs in conjunction with a sensorineural hearing loss, it is referred to as a mixed hearing loss. Depending upon the severity and nature of the conductive loss, this type of hearing impairment can often be treated with surgical intervention or pharmaceuticals to partially or, in some cases, fully restore hearing acuity to within normal range. However, cases of permanent or chronic conductive hearing loss may require other treatment modalities such as hearing aid devices to improve detection of sound and speech perception.

<span class="mw-page-title-main">Weber test</span> Screening test for hearing

The Weber test is a screening test for hearing performed with a tuning fork. It can detect unilateral (one-sided) conductive hearing loss and unilateral sensorineural hearing loss. The test is named after Ernst Heinrich Weber (1795–1878). Conductive hearing ability is mediated by the middle ear composed of the ossicles: the malleus, the incus, and the stapes. Sensorineural hearing ability is mediated by the inner ear composed of the cochlea with its internal basilar membrane and attached cochlear nerve. The outer ear consisting of the pinna, ear canal, and ear drum or tympanic membrane transmits sounds to the middle ear but does not contribute to the conduction or sensorineural hearing ability save for hearing transmissions limited by cerumen impaction.

The Rinne test is used primarily to evaluate loss of hearing in one ear. It compares perception of sounds transmitted by air conduction to those transmitted by bone conduction through the mastoid. Thus, one can quickly screen for the presence of conductive hearing loss.

Unilateral hearing loss (UHL) is a type of hearing impairment where there is normal hearing in one ear and impaired hearing in the other ear.

<span class="mw-page-title-main">Bone-anchored hearing aid</span>

A bone-anchored hearing aid (BAHA) is a type of hearing aid based on bone conduction. It is primarily suited for people who have conductive hearing losses, unilateral hearing loss, single-sided deafness and people with mixed hearing losses who cannot otherwise wear 'in the ear' or 'behind the ear' hearing aids. They are more expensive than conventional hearing aids, and their placement involves invasive surgery which carries a risk of complications, although when complications do occur, they are usually minor.

The auditory brainstem response (ABR), also called brainstem evoked response audiometry (BERA), is an auditory evoked potential extracted from ongoing electrical activity in the brain and recorded via electrodes placed on the scalp. The measured recording is a series of six to seven vertex positive waves of which I through V are evaluated. These waves, labeled with Roman numerals in Jewett and Williston convention, occur in the first 10 milliseconds after onset of an auditory stimulus. The ABR is considered an exogenous response because it is dependent upon external factors.

<span class="mw-page-title-main">Pure-tone audiometry</span>

Pure-tone audiometry is the main hearing test used to identify hearing threshold levels of an individual, enabling determination of the degree, type and configuration of a hearing loss and thus providing a basis for diagnosis and management. Pure-tone audiometry is a subjective, behavioural measurement of a hearing threshold, as it relies on patient responses to pure tone stimuli. Therefore, pure-tone audiometry is only used on adults and children old enough to cooperate with the test procedure. As with most clinical tests, standardized calibration of the test environment, the equipment and the stimuli is needed before testing proceeds. Pure-tone audiometry only measures audibility thresholds, rather than other aspects of hearing such as sound localization and speech recognition. However, there are benefits to using pure-tone audiometry over other forms of hearing test, such as click auditory brainstem response (ABR). Pure-tone audiometry provides ear specific thresholds, and uses frequency specific pure tones to give place specific responses, so that the configuration of a hearing loss can be identified. As pure-tone audiometry uses both air and bone conduction audiometry, the type of loss can also be identified via the air-bone gap. Although pure-tone audiometry has many clinical benefits, it is not perfect at identifying all losses, such as ‘dead regions’ of the cochlea and neuropathies such as auditory processing disorder (APD). This raises the question of whether or not audiograms accurately predict someone's perceived degree of disability.

<span class="mw-page-title-main">Audio headset</span> Telephone or computer accessory

Headsets connect over a telephone or to a computer, allowing the user to speak and listen while keeping both hands free. They are commonly used in customer service and technical support centers, where employees can converse with customers while typing information into a computer. Also common among computer gamers are headsets, which will let them talk with each other and hear others, as well as use their keyboards and mice to play the game.

Geoffrey R. Ball (born 1964) is an American physiologist specializing in Biomechanics and the inventor of the VIBRANT SOUNDBRIDGE active middle ear implant – a medical device designed to treat his own hearing loss.

<span class="mw-page-title-main">History of hearing aids</span>

The first hearing aid was created in the 17th century. The movement toward modern hearing aids began with the creation of the telephone, and the first electric hearing aid was created in 1898. By the late 20th century, the digital hearing aid was distributed to the public commercially. Some of the first hearing aids were external hearing aids. External hearing aids directed sounds in front of the ear and blocked all other noises. The apparatus would fit behind or in the ear.

SoundBite Hearing System is a non-surgical bone conduction prosthetic device that transmits sound via the teeth. It is an alternative to surgical bone conduction prosthetic devices, which require surgical implantation into the skull to conduct sound.

Cartilage conduction is a pathway by which sound signals are transmitted to the inner ear. In 2004, Hiroshi Hosoi discovered this pathway and named “cartilage conduction”. Hearing by cartilage conduction is distinct from conventional sound-conduction pathways, such as air or bone, because it is realized by touching a transducer on the aural cartilage and does not involve the vibration of the skull bone. Therefore, cartilage conduction is referred to as the “third auditory pathway”.

Treatment depends on the specific cause if known as well as the extent, type, and configuration of the hearing loss. Most hearing loss results from age and noise, is progressive, and irreversible. There are currently no approved or recommended treatments to restore hearing; it is commonly managed through using hearing aids. A few specific types of hearing loss are amenable to surgical treatment. In other cases, treatment involves addressing underlying pathologies, but any hearing loss incurred may be permanent.

<span class="mw-page-title-main">Diagnosis of hearing loss</span>

Identification of a hearing loss is usually conducted by a general practitioner medical doctor, otolaryngologist, certified and licensed audiologist, school or industrial audiometrist, or other audiometric technician. Diagnosis of the cause of a hearing loss is carried out by a specialist physician or otorhinolaryngologist.

A middle ear implant is a hearing device that is surgically implanted into the middle ear. They help people with conductive, sensorineural or mixed hearing loss to hear. 

References