Calcichordate hypothesis

Last updated

The calcichordate hypothesis, formulated by British Museum paleontologist Richard Jefferies, holds that each separate lineage of chordate (Cephalochordates, Urochordates, Craniates) evolved from its own lineage of mitrate, and thus the echinoderms and the chordates are sister groups, with the hemichordates as an out-group. [1] It has been disproven by the discovery that the "tail" of Stylophorans contains a water vascular system, ambulacrum, and tube feet. [2] However, the clade Olfactores was first proposed as part of the calcichordate theory, [3] and has since been validated through genetic sequencing, albeit without the involvement of mitrates. [4] [5]

Contents

Details

The carpoids Cornuta and Mitrata are grouped together in a clade called Calcichordata. Cornutes and mitrates are viewed as sister groups, and mitrates represent stem group chordates. The mitrates (and thus the chordates) are all Dexiothetes, dexiothetism being a synapomorphy for the clade. [6] [7]

Hypothetical phylogeny

In the evolution of the chordates, the ancestors of the chordates underwent a profound remodeling of their bauplan, becoming dexiothetetic. All chordates share a common ancestor which lost its echinoderm stereom calcite skeleton. However, later revisions of the theory had each separate lineage losing its calcitic skeleton independently, [6] as it evolved from its own mitrate ancestor, making the chordates a paraphyletic group[ citation needed ].

Deuterostomata
The calcichordate family tree in its original incarnation, with all chordates originating from a soft bodied ancestor. Later versions of the theory had each chordate group having a mitrate ancestor each, requiring three episodes of loss of stereom. Mitrates are assumed to have evolved from the cornutes. [6]

The central part of the Calcichordate Theory lies in the interpretation of the phylogeny of the two groups of stylophorans, which are termed calcichordates in the theory. Mitrates (and the rest of the calcichordates that evolved from them) are dexiothetic as a synapomorphy, having evolved from a cornute. Mitrates are thought to have formed their tail from the proximal part of the cornute tail, with the distal part atomised, [7] and evolving new appendages. The left hand side in this scheme would be cognate with the Pterobranch left-hand side, with the right hand side a novel feature. This would explain the bizarre embryology of Amphioxus, a basal cephalochordate widely held to be the prime example of a chordate bauplan.

Anatomy according to the Calcichordate view

The appendage of the carpoids is regarded as a tail, with the central canal probably containing a notochord. [8] The large orifice seen is most likely the mouth, with many of the slits along the side assumed to be gill slits. While the Cornuta were interpreted as lying with the flat side ventrally, Jefferies suggested that in Mitrata the flat side was dorsal and the convex side ventral, while the tail was curved underneath to provide forward thrust; many mitrates are preserved with the tail underneath.

Criticism

The calcichordate theory is not widely accepted as a viable theory on the origins of the chordates. [7] Many cite its overall unparsimonious nature as unnecessary, however there are many specific points that can be raised. All in all, the carpoids are much closer to echinoderms than to chordates.

Loss of Stereom

Stereom calcite is considered to be a synapomorphy of the echinoderms, and there is no evidence for it ever having evolved in any other lineage, and there is no crown group echinoderm that seems to have lost it secondarily[ citation needed ]. The theory implies either that it must have been lost once or three times, which is considered to be very unlikely.

Timing of appearance

Chordates are known to exist from the Cambrian with Pikaia , which is around the same time that carpoids are found, although the mitrates may not be stem group.

Genetic evidence

Genetic evidence has shown that Hemichordata is the sister group to Echinodermata. [9]

Falsification

The calcichordate hypothesis has been disproven as of 2019; exceptional preservation of soft tissues in the single appendage of the stylophorans Thoralicystis and Hanusia revealed clear traces consistent with a water vascular system—an ambulacral canal with tube feet—covered by movable plates, where the calcichordate hypothesis would require the anatomy be a tail containing a notochord protected by fixed plates. The enlarged area at the base of the appendage, which in the calcichordate hypothesis would contain muscles to move the tail, contains an extension of the body cavity. [2]

The findings also disprove the hypothesis that the group were stalked echinoderms. Based on the internal anatomy, "calcichordates" (stylophorans) are revealed as echinoderms with a single, somewhat starfish-like arm that gathered food with tube feet and transferred it to a mouth at the base of the arm. The food-gathering arm may also have been used for locomotion, as in starfish. The fossils from the Bou Izargane Lagerstätte from the Lower Ordivician of Morocco were unknown to Jeffries; they had not been discovered when he formulated the hypothesis in the early 1960s based on the examination of a group of mitrate fossils, and were still unknown when he wrote subsequent papers in 1981 and 1997 defending the hypothesis. Stylophorans are classed as echinoderms based on their possession of at least two shared and unique features (apomorphies) of the phylum; stereom plates and a water vascular system. Because they show no sign of radial symmetry, the position of stylophorans within Echinodermata remains unresolved as of 2019. [2]

See also

Related Research Articles

<span class="mw-page-title-main">Chordate</span> Phylum of animals having a dorsal nerve cord

A chordate is a deuterostomal bilaterian animal belonging to the phylum Chordata. All chordates possess, at some point during their larval or adult stages, five distinctive physical characteristics (synapomorphies) that distinguish them from other taxa. These five synapomorphies are a notochord, a hollow dorsal nerve cord, an endostyle or thyroid, pharyngeal slits, and a post-anal tail.

<span class="mw-page-title-main">Vertebrate</span> Subphylum of chordates

Vertebrates are animals with a vertebral column, and a cranium, or skull. The vertebral column surrounds and protects the spinal cord, while the cranium protects the brain.

<span class="mw-page-title-main">Notochord</span> Flexible rod-shaped structure in all chordates

The notochord is an elastic, rod-like structure found in chordates. In chordate vertebrates the notochord is an embryonic structure that disintegrates, as the vertebrae develop, to become the nucleus pulposus in the intervertebral discs of the vertebral column. In non-vertebrate chordates a notochord persists.

<span class="mw-page-title-main">Endoskeleton</span> Internal support structure of an animal

An endoskeleton is a structural frame (skeleton) on the inside of an animal, overlaid by soft tissues and usually composed of mineralized tissue. Endoskeletons serve as structural support against gravity and mechanical loads, and provide anchoring attachment sites for skeletal muscles to transmit force and allow movements and locomotion.

Pikaia gracilens is an extinct, primitive chordate marine animal known from the Middle Cambrian Burgess Shale of British Columbia. Described in 1911 by Charles Doolittle Walcott as an annelid, and in 1979 by Harry B. Whittington and Simon Conway Morris as a chordate, it became "the most famous early chordate fossil", or "famously known as the earliest described Cambrian chordate". It is estimated to have lived during the latter period of the Cambrian explosion. Since its initial discovery, more than a hundred specimens have been recovered.

<span class="mw-page-title-main">Apomorphy and synapomorphy</span> Two concepts on heritable traits

In phylogenetics, an apomorphy is a novel character or character state that has evolved from its ancestral form. A synapomorphy is an apomorphy shared by two or more taxa and is therefore hypothesized to have evolved in their most recent common ancestor. In cladistics, synapomorphy implies homology.

In phylogenetics, a primitive character, trait, or feature of a lineage or taxon is one that is inherited from the common ancestor of a clade and has undergone little change since. Conversely, a trait that appears within the clade group is called advanced or derived. A clade is a group of organisms that consists of a common ancestor and all its lineal descendants.

<i>Cothurnocystis</i> Extinct genus of marine invertebrates

Cothurnocystis is a genus of small enigmatic echinoderms that lived during the Ordovician. Individual animals had a flat boot-shaped body and a thin rod-shaped appendage that may be a stem, or analogous to a foot or a tail. Fossils of Cothurnocystis species have been found in Nevada, Scotland, Czech Republic, France and Morocco.

<span class="mw-page-title-main">Stylophora</span> Extinct group of marine invertebrates

The stylophorans are an extinct, possibly polyphyletic group allied to the Paleozoic Era echinoderms, comprising the prehistoric cornutes and mitrates. It is synonymous with the subphylum Calcichordata. Their unusual appearances have led to a variety of very different reconstructions of their anatomy, how they lived, and their relationships to other organisms.

<span class="mw-page-title-main">Eleutherozoa</span> Clade of echinoderms

Eleutherozoa is a subphylum of echinoderms. They are mobile animals with the mouth directed towards the substrate. They usually have a madreporite, tube feet, and moveable spines of some sort. It includes all living echinoderms except for crinoids. The monophyly of Eleutherozoa has been proven sufficiently well to be considered "uncontroversial."

<span class="mw-page-title-main">Mitrate</span> Extinct order of marine invertebrates

Mitrates are an extinct group of stem group echinoderms, which may be closely related to the hemichordates. Along with the cornutes, they form one half of the Stylophora.

<i>Metaspriggina</i> Cambrian fossil genus of chordate

Metaspriggina is a genus of chordate initially known from two specimens in the Middle Cambrian Burgess Shale and 44 specimens found in 2012 at the Marble Canyon bed in Kootenay National Park.

<span class="mw-page-title-main">Deuterostome</span> Superphylum of bilateral animals

Deuterostomes are bilaterian animals of the superphylum Deuterostomia, typically characterized by their anus forming before the mouth during embryonic development. Deuterostomia is further divided into four phyla: Chordata, Echinodermata, Hemichordata, and the extinct Vetulicolia known from Cambrian fossils. The extinct clade Cambroernida is thought to be a member of Deuterostomia.

<span class="mw-page-title-main">Homalozoa</span> Extinct historic group of marine invertebrates

Homalozoa is an obsolete extinct subphylum of Paleozoic era echinoderms, prehistoric marine invertebrates. They are also referred to as carpoids.

Dexiothetism refers to a reorganisation of a clade's bauplan, with right becoming ventral and left becoming dorsal. The organism would then recruit a new left hand side.

Richard P.S. Jefferies was a paleontologist famous for developing the Calcichordate Theory of the origin of chordates, now widely discredited. Jefferies joined the British Museum in 1960, and was largely based there for the remainder of his career.

<span class="mw-page-title-main">Stereom</span>

Stereom is a calcium carbonate material that makes up the internal skeletons found in all echinoderms, both living and fossilized forms. It is a sponge-like porous structure which, in a sea urchin may be 50% by volume living cells, and the rest being a matrix of calcite crystals. The size of openings in stereom varies in different species and in different places within the same organism. When an echinoderm becomes a fossil, microscopic examination is used to reveal the structure and such examination is often an important tool to classify the fossil as an echinoderm or related creature.

<span class="mw-page-title-main">Cincta</span> Extinct class of marine invertebrates

Cincta is an extinct class of echinoderms that lived only in the Middle Cambrian epoch. Homostelea is a junior synonym. The classification of cinctans is controversial, but they are probably part of the echinoderm stem group.

<span class="mw-page-title-main">Soluta (echinoderm)</span> Extinct clade of echinoderms

Soluta is an extinct class of echinoderms that lived from the Middle Cambrian to the Early Devonian. The class is also known by its junior synonym Homoiostelea. Soluta is one of the four "carpoid" classes, alongside Ctenocystoidea, Cincta, and Stylophora, which made up the obsolete subphylum Homalozoa. Solutes were asymmetric animals with a stereom skeleton and two appendages, an arm extending anteriorly and a posterior appendage called a homoiostele.

<i>Yanjiahella</i> Extinct genus of marine invertebrates

Yanjiahella biscarpa is an extinct species of Early Cambrian deuterostome which may represent the earliest stem group echinoderm.

References

  1. Jefferies, R. P. S. (1999). "The Calcichordate Theory". Science. 236 (4807): 1476. doi:10.1126/science.236.4807.1476. PMID   17793239.
  2. 1 2 3 Lefebvre, Bertrand; Guensburg, Thomas E.; Martin, Emmanuel L. O.; Mooi, Rich; Nardin, Elise; Nohejlová, Martina; Saleh, Farid; Kouraïss, Khaoula; El Hariri, Khadija (2019-02-01). "Exceptionally preserved soft parts in fossils from the Lower Ordovician of Morocco clarify stylophoran affinities within basal deuterostomes". Geobios. 52: 27–36. Bibcode:2019Geobi..52...27L. doi: 10.1016/j.geobios.2018.11.001 . ISSN   0016-6995.
  3. Jeffries, R. P. S. "Two types of bilateral symmetry in the Metazoa: chordate and bilaterian". In Bock, Gregory R.; Marsh, Joan (eds.). Biological Asymmetry and Handedness. Ciba Foundation Symposium. John Wiley and Sons. doi:10.1002/9780470514160.ch7.(Note: See figure 15 on page 116)
  4. Delsuc, F (2006). "Tunicates and not cephalochordates are the closest living relatives of vertebrates" (PDF). Nature. 439 (7079): 965–968. Bibcode:2006Natur.439..965D. doi:10.1038/nature04336. PMID   16495997. S2CID   4382758.
  5. Dunn, C.W. (2008). "Broad phylogenetic sampling improves resolution of the animal tree of life". Nature. 452 (7188): 745–749. Bibcode:2008Natur.452..745D. doi:10.1038/nature06614. PMID   18322464. S2CID   4397099.
  6. 1 2 3 Gee, Henry (1996). "Jefferies' Calcichordate Theory". Before the backbone: views on the origin of the vertebrates. London: Chapman & Hall. ISBN   978-0-585-25272-8.
  7. 1 2 3 Ruta, M. (1999). "Brief review of the stylophoran debate". Evolution & Development. 1 (2): 123–35. doi:10.1046/j.1525-142x.1999.99008.x. PMID   11324028. S2CID   21968834.
  8. Taylor, Christopher. "Stylophora: Like a Tee-to-tum They Twirled Him". The Paleos Project. Archived from the original on 2010-06-05. Retrieved 2010-05-29.
  9. "Archived copy" (PDF). Archived from the original (PDF) on 2011-07-19. Retrieved 2011-02-23.{{cite web}}: CS1 maint: archived copy as title (link)