Craniate

Last updated

Contents

Craniates
Temporal range: Early Cambrian - Recent
Pacific hagfish Myxine.jpg
A Pacific hagfish, an example of (what was thought to be) a "non-vertebrate craniate"
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Clade: Olfactores
Clade: Craniata
Lankester, 1877 [1]
Included groups
Synonyms
  • Craniota Haeckel, 1866
  • Pachycardia Haeckel, 1866
  • Vertebrata J-B. Lamarck, 1801

A craniate is a member of the Craniata (sometimes called the Craniota), a proposed clade of chordate animals with a skull of hard bone or cartilage. Living representatives are the Myxini (hagfishes), Hyperoartia (including lampreys), and the much more numerous Gnathostomata (jawed vertebrates). [3] [4] Formerly distinct from vertebrates by excluding hagfish, molecular and anatomical research in the 21st century has led to the reinclusion of hagfish as vertebrates, making living craniates synonymous with living vertebrates.

The clade was conceived largely on the basis of the Hyperoartia (lampreys and kin) being more closely related to the Gnathostomata (jawed vertebrates) than the Myxini (hagfishes). This, combined with an apparent lack of vertebral elements within the Myxini, suggested that the Myxini were descended from a more ancient lineage than the vertebrates, and that the skull developed before the vertebral column. The clade was thus composed of the Hyperoartia and the vertebrates, and any extinct chordates with skulls.

However recent studies using molecular phylogenetics have contradicted this view, with evidence that the Cyclostomata (Hyperoartia and Myxini) is monophyletic; this suggests that the Myxini are degenerate vertebrates, and therefore the vertebrates and craniates are cladistically equivalent, at least for the living representatives. The placement of the Myxini within the vertebrates has been further strengthened by recent anatomical analysis, with vestiges of a vertebral column being discovered in the Myxini. [5]

Characteristics

In the simplest sense, craniates are chordates with well-defined heads, thus excluding members of the chordate subphyla Tunicata (tunicates) and Cephalochordata (lancelets), but including Myxini, which have cartilaginous crania and tooth-like structures composed of keratin. Craniata also includes all lampreys and armoured jawless fishes, armoured jawed fish, sharks, skates, and rays, and teleostomians: spiny sharks, bony fish, lissamphibians, temnospondyls and protoreptiles, sauropsids and mammals. The craniate head consists of a three-part brain, neural crest which gives rise to many cell lineages, and a cranium. [6] [7]

In addition to distinct crania (sing. cranium ), craniates possess many derived characteristics, which have allowed for more complexity to follow. Molecular-genetic analysis of craniates reveals that, compared to less complex animals, they developed duplicate sets of many gene families that are involved in cell signaling, transcription, and morphogenesis (see homeobox). [3]

In general, craniates are much more active than tunicates and lancelets and, as a result, have greater metabolic demands, as well as several anatomical adaptations. Aquatic craniates have gill slits, which are connected to muscles to pump water through the slits, engaging in both feeding and gas exchange (as opposed to lancelets, whose pharyngeal slits are used only for suspension feeding, chiefly by cilia-mucus rather than muscles). Muscles line the alimentary canal, moving food through the canal, allowing higher craniates such as mammals to develop more complex digestive systems for optimal food processing. Craniates have cardiovascular systems that include a heart with at least two chambers, red blood cells, oxygen transporting hemoglobin as well as myoglobin, livers and kidneys. [3]

Systematics and taxonomy

Craniata, including this placoderm fish (Dunkleosteus sp.), are characterized by the presence of a cranium, mandible, and other facial bones. Figure 29 01 05.jpg
Craniata, including this placoderm fish ( Dunkleosteus sp.), are characterized by the presence of a cranium, mandible, and other facial bones.

Linnaeus (1758) [9] used the terms Craniata and Vertebrata interchangeably to include lampreys, jawed fishes, and terrestrial vertebrates (or tetrapods). Hagfishes were classified as Vermes, possibly representing a transitional form between 'worms' and fishes.

Dumeril (1806) [9] grouped hagfishes and lampreys in the taxon Cyclostomi, characterized by horny teeth borne on a tongue-like apparatus, a large notochord as adults, and pouch-shaped gills (Marspibranchii). Cyclostomes were regarded as either degenerate cartilaginous fishes or primitive vertebrates. Cope (1889) [9] coined the name Agnatha ("jawless") for a group that included the cyclostomes and a number of fossil groups in which jaws could not be observed. Vertebrates were subsequently divided into two major sister-groups: the Agnatha and the Gnathostomata (jawed vertebrates). Stensiö (1927) [9] suggested that the two groups of living agnathans (i.e. the cyclostomes) arose independently from different groups of fossil agnathans.

Løvtrup (1977) [9] argued that lampreys are more closely related to gnathostomes based on a number of uniquely derived characters, including:

In other words, the cyclostome characteristics (e.g. horny teeth on a "tongue", gill pouches) are either instances of convergent evolution for feeding and gill ventilation in animals with an eel-like body shape, or represent primitive craniate characteristics subsequently lost or modified in gnathostomes. On this basis Janvier (1978) [9] proposed to use the names Vertebrata and Craniata as two distinct and nested taxa.

Validity

The validity of the taxon "Craniata" was recently examined by Delarbre et al. (2002) using mtDNA sequence data, concluding that Myxini is more closely related to Hyperoartia than to Gnathostomata - i.e., that modern jawless fishes form a clade called Cyclostomata. The argument is that, if Cyclostomata is indeed monophyletic, Vertebrata would return to its old content (Gnathostomata + Cyclostomata) and the name Craniata, being superfluous, would become a junior synonym.

The new evidence removes support for the hypothesis for the evolutionary sequence by which (from among tunicate-like chordates) first the hard cranium arose as it is exhibited by the hagfishes, then the backbone as exhibited by the lampreys, and then finally the hinged jaw that is now ubiquitous. In 2010, Philippe Janvier stated:

Although I was among the early supporters of vertebrate paraphyly, I am impressed by the evidence provided by Heimberg et al. and prepared to admit that cyclostomes are, in fact, monophyletic. The consequence is that they may tell us little, if anything, about the dawn of vertebrate evolution, except that the intuitions of 19th century zoologists were correct in assuming that these odd vertebrates (notably, hagfishes) are strongly degenerate and have lost many characters over time. [10]

Classification

Phylogenetic tree of the Chordate phylum. Lines show probable evolutionary relationships, including extinct taxa, which are denoted with a dagger, †. Some are invertebrates. The positions (relationships) of the Lancelet, Tunicate, and Craniata clades are as reported. [11] [12] [13]

Chordata

See also

Notes

  1. Nielsen, C. (July 2012). "The authorship of higher chordate taxa". Zoologica Scripta. 41 (4): 435–436. doi:10.1111/j.1463-6409.2012.00536.x. S2CID   83266247.
  2. Miyashita, Tetsuto (2019). "Hagfish from the Cretaceous Tethys Sea and a reconciliation of the morphological–molecular conflict in early vertebrate phylogeny". Proceedings of the National Academy of Sciences of the United States of America. 116 (6): 2146–2151. Bibcode:2019PNAS..116.2146M. doi: 10.1073/pnas.1814794116 . PMC   6369785 . PMID   30670644.
  3. 1 2 3 Campbell & Reece 2005 p. 676
  4. Cracraft & Donoghue 2004 p. 390
  5. Janvier, Philippe (2011). "Comparative Anatomy: All Vertebrates Do Have Vertebrae". Current Biology. 21 (17): R661–R663. doi: 10.1016/j.cub.2011.07.014 . ISSN   0960-9822. PMID   21920298. S2CID   17652802.
  6. Campbell & Reece 2005 pp. 675–7
  7. Parker & Haswell 1921
  8. Chordates OpenStax, 9 May 2019.
  9. 1 2 3 4 5 6 Janvier, Philippe. "Craniata - Animals with skulls". Tree of Life Web Project (ToL). Tree of Life Web Project.
  10. "MicroRNAs revive old views about jawless vertebrate divergence and evolution." Proceedings of the National Academy of Sciences (USA) 107:19137-19138.
  11. Putnam, N. H.; Butts, T.; Ferrier, D. E. K.; Furlong, R. F.; Hellsten, U.; Kawashima, T.; Robinson-Rechavi, M.; Shoguchi, E.; Terry, A.; Yu, J. K.; Benito-Gutiérrez, E. L.; Dubchak, I.; Garcia-Fernàndez, J.; Gibson-Brown, J. J.; Grigoriev, I. V.; Horton, A. C.; De Jong, P. J.; Jurka, J.; Kapitonov, V. V.; Kohara, Y.; Kuroki, Y.; Lindquist, E.; Lucas, S.; Osoegawa, K.; Pennacchio, L. A.; Salamov, A. A.; Satou, Y.; Sauka-Spengler, T.; Schmutz, J.; Shin-i, T. (19 June 2008). "The amphioxus genome and the evolution of the chordate karyotype". Nature. 453 (7198): 1064–1071. Bibcode:2008Natur.453.1064P. doi: 10.1038/nature06967 . PMID   18563158.
  12. Ota, K. G.; Kuratani, S. (September 2007). "Cyclostome embryology and early evolutionary history of vertebrates". Integrative and Comparative Biology. 47 (3): 329–337. doi: 10.1093/icb/icm022 . PMID   21672842.
  13. Delsuc F, Philippe H, Tsagkogeorga G, Simion P, Tilak MK, Turon X, López-Legentil S, Piette J, Lemaire P, Douzery EJ (April 2018). "A phylogenomic framework and timescale for comparative studies of tunicates". BMC Biology. 16 (1): 39. doi: 10.1186/s12915-018-0499-2 . PMC   5899321 . PMID   29653534.

Related Research Articles

<span class="mw-page-title-main">Chordate</span> Phylum of animals having a dorsal nerve cord

A chordate is a deuterostomic animal belonging to the phylum Chordata. All chordates possess, at some point during their larval or adult stages, five distinctive physical characteristics (synapomorphies) that distinguish them from other taxa. These five synapomorphies are a notochord, a hollow dorsal nerve cord, an endostyle or thyroid, pharyngeal slits, and a post-anal tail. The name "chordate" comes from the first of these synapomorphies, the notochord, which plays a significant role in chordate body plan structuring and movements. Chordates are also bilaterally symmetric, have a coelom, possess a closed circulatory system, and exhibit metameric segmentation.

<span class="mw-page-title-main">Vertebrate</span> Subphylum of chordates with backbones

Vertebrates are deuterostomal animals with bony or cartilaginous axial endoskeleton — known as the vertebral column, spine or backbone — around and along the spinal cord, including all fish, amphibians, reptiles, birds and mammals. The vertebrates consist of all the taxa within the subphylum Vertebrata and represent the overwhelming majority of the phylum Chordata, with currently about 69,963 species described.

<span class="mw-page-title-main">Hagfish</span> Family of eel-shaped, slime-producing animal

Hagfish, of the class Myxini and order Myxiniformes, are eel-shaped jawless fish. Hagfish are the only known living animals that have a skull but no vertebral column, although they do have rudimentary vertebrae. Hagfish are marine predators and scavengers who can defend themselves against other larger predators by releasing copious amounts of slime from mucous glands in their skin.

<span class="mw-page-title-main">Agnatha</span> Infraphylum of jawless fish

Agnatha is an infraphylum of jawless fish in the phylum Chordata, subphylum Vertebrata, consisting of both living (cyclostomes) and extinct species. Among recent animals, cyclostomes are sister to all vertebrates with jaws, known as gnathostomes.

<span class="mw-page-title-main">Gnathostomata</span> Infraphylum of vertebrates

Gnathostomata are the jawed vertebrates. Gnathostome diversity comprises roughly 60,000 species, which accounts for 99% of all living vertebrates, including humans. In addition to opposing jaws, living gnathostomes have true teeth, paired appendages, the elastomeric protein of elastin, and a horizontal semicircular canal of the inner ear, along with physiological and cellular anatomical characters such as the myelin sheaths of neurons, and an adaptive immune system that has the discrete lymphoid organs of spleen and thymus, and uses V(D)J recombination to create antigen recognition sites, rather than using genetic recombination in the variable lymphocyte receptor gene.

<i>Haikouichthys</i> Extinct genus of jawless fishes

Haikouichthys is an extinct genus of craniate that lived 518 million years ago, during the Cambrian explosion of multicellular life. Haikouichthys had a defined skull and other characteristics that have led paleontologists to label it a true craniate, and even to be popularly characterized as one of the earliest fishes. Cladistic analysis indicates that the animal is probably a basal chordate or a basal craniate; but it does not possess sufficient features to be included uncontroversially even in either stem group. It was formally described in 1999.

<span class="mw-page-title-main">Fish anatomy</span> Study of the form or morphology of fishes

Fish anatomy is the study of the form or morphology of fish. It can be contrasted with fish physiology, which is the study of how the component parts of fish function together in the living fish. In practice, fish anatomy and fish physiology complement each other, the former dealing with the structure of a fish, its organs or component parts and how they are put together, such as might be observed on the dissecting table or under the microscope, and the latter dealing with how those components function together in living fish.

<span class="mw-page-title-main">Notochord</span> Flexible rod-shaped structure in all chordates

In zoology and developmental anatomy, the notochord is an elastic, rod-like anatomical structure found in many deuterostomal animals. A notochord is one of five synapomorphies used to define a species as a chordate.

<span class="mw-page-title-main">Cephalaspidomorphi</span> Extinct clade of jawless fishes

Cephalaspidomorphs are a group of jawless fishes named for Cephalaspis of the osteostracans. Most biologists regard this taxon as extinct, but the name is sometimes used in the classification of lampreys, because lampreys were once thought to be related to cephalaspids. If lampreys are included, they would extend the known range of the group from the Silurian and Devonian periods to the present day. They are the closest relatives of jawed fishes, who emerged from within them and they would survive if the jawed fish are included.

<span class="mw-page-title-main">Ostracoderm</span> Armored jawless fish of the Paleozoic

Ostracoderms are the armored jawless fish of the Paleozoic Era. The term does not often appear in classifications today because it is paraphyletic and thus does not correspond to one evolutionary lineage. However, the term is still used as an informal way of loosely grouping together the armored jawless fishes.

<span class="mw-page-title-main">Cyclostomi</span> Superclass of jawless fishes

Cyclostomi, often referred to as Cyclostomata, is a group of vertebrates that comprises the living jawless fishes: the lampreys and hagfishes. Both groups have jawless mouths with horny epidermal structures that function as teeth called ceratodontes, and branchial arches that are internally positioned instead of external as in the related jawed fishes. The name Cyclostomi means "round mouths". It was named by Joan Crockford-Beattie.

Cyclostome is a biological term used in a few different senses:

Myomeres are blocks of skeletal muscle tissue arranged in sequence, commonly found in aquatic chordates. Myomeres are separated from adjacent myomeres by connective fascia (myosepta) and most easily seen in larval fishes or in the olm. Myomere counts are sometimes used for identifying specimens, since their number corresponds to the number of vertebrae in the adults. Location varies, with some species containing these only near the tails, while some have them located near the scapular or pelvic girdles. Depending on the species, myomeres could be arranged in an epaxial or hypaxial manner. Hypaxial refers to ventral muscles and related structures while epaxial refers to more dorsal muscles. The horizontal septum divides these two regions in vertebrates from cyclostomes to gnathostomes. In terrestrial chordates, the myomeres become fused as well as indistinct, due to the disappearance of myosepta.

<span class="mw-page-title-main">Marine vertebrate</span> Marine animals with a vertebrate column

Marine vertebrates are vertebrates that live in marine environments. These are the marine fish and the marine tetrapods. Vertebrates are a subphylum of chordates that have a vertebral column (backbone). The vertebral column provides the central support structure for an internal skeleton. The internal skeleton gives shape, support, and protection to the body and can provide a means of anchoring fins or limbs to the body. The vertebral column also serves to house and protect the spinal cord that lies within the column.

Chordate genomics is the study of the evolution of the chordate clade based on a comparison of the genomes of several species within the clade. The field depends on whole genome data of organisms. It uses comparisons of synteny blocks, chromosome translocation, and other genomic rearrangements to determine the evolutionary history of the clade, and to reconstruct the genome of the founding species.

<i>Metaspriggina</i> Cambrian fossil genus of chordate

Metaspriggina is a genus of chordate initially known from two specimens in the Middle Cambrian Burgess Shale and 44 specimens found in 2012 at the Marble Canyon bed in Kootenay National Park.

<span class="mw-page-title-main">Deuterostome</span> Superphylum of bilateral animals

Deuterostomes are bilaterian animals of the superphylum Deuterostomia, typically characterized by their anus forming before the mouth during embryonic development. Deuterostomia is further divided into 4 phyla: Chordata, Echinodermata, Hemichordata, and the extinct Vetulicolia known from Cambrian fossils. The extinct clade Cambroernida is also thought to be a member of Deuterostomia.

<span class="mw-page-title-main">Evolution of fish</span> Origin and diversification of fish through geologic time

The evolution of fish began about 530 million years ago during the Cambrian explosion. It was during this time that the early chordates developed the skull and the vertebral column, leading to the first craniates and vertebrates. The first fish lineages belong to the Agnatha, or jawless fish. Early examples include Haikouichthys. During the late Cambrian, eel-like jawless fish called the conodonts, and small mostly armoured fish known as ostracoderms, first appeared. Most jawless fish are now extinct; but the extant lampreys may approximate ancient pre-jawed fish. Lampreys belong to the Cyclostomata, which includes the extant hagfish, and this group may have split early on from other agnathans.

<span class="mw-page-title-main">Olfactores</span> Clade of animals comprising vertebrates and tunicates

Olfactores is a clade within the Chordata that comprises the Tunicata (Urochordata) and the Vertebrata. Olfactores represent the overwhelming majority of the phylum Chordata, as the Cephalochordata are the only chordates not included in the clade. This clade is defined by a more advanced olfactory system which, in the immediate vertebrate generation, caused the appearance of nostrils.

Fishes are a paraphyletic group and for this reason, the class Pisces seen in older reference works is no longer used in formal taxonomy. Traditional classification divides fish into three extant classes, and with extinct forms sometimes classified within those groups, sometimes as their own classes:

References