Brachiozoa

Last updated

Brachiozoa
Temporal range: 538.8–0  Ma
Phoronis Maria Grazia Montanucci2.jpg
A colony of the phoronid Phoronis hippocrepis in shallow water on the coast of Italy.
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Clade: Nephrozoa
(unranked): Protostomia
(unranked): Spiralia
Superphylum: Lophotrochozoa
Clade: Lophophorata
Clade: Brachiozoa
Cavalier-Smith 1998
Phyla and Class

Brachiozoa is a grouping of lophophorate animals including Brachiopoda and Phoronida. [1] [2] [3] It also includes their ancestors, the extinct tommotiids.

Related Research Articles

<span class="mw-page-title-main">Bryozoa</span> Phylum of colonial aquatic invertebrates called moss animals

Bryozoa are a phylum of simple, aquatic invertebrate animals, nearly all living in sedentary colonies. Typically about 0.5 millimetres long, they have a special feeding structure called a lophophore, a "crown" of tentacles used for filter feeding. Most marine bryozoans live in tropical waters, but a few are found in oceanic trenches and polar waters. The bryozoans are classified as the marine bryozoans (Stenolaemata), freshwater bryozoans (Phylactolaemata), and mostly-marine bryozoans (Gymnolaemata), a few members of which prefer brackish water. 5,869 living species are known. Originally all of the crown group Bryozoa were colonial, but as an adaptation to a mesopsammal life or to deep-sea habitats, secondarily solitary forms have since evolved. Solitary species has been described in four genera; Aethozooides, Aethozoon, Franzenella and Monobryozoon). The latter having a statocyst-like organ with a supposed excretory function.

<span class="mw-page-title-main">Lophophorata</span> Clade of shelled animals

The Lophophorata or Tentaculata are a Lophotrochozoan clade consisting of the Brachiozoa and the Bryozoa. They have a lophophore. Molecular phylogenetic analyses suggest that lophophorates are protostomes, but on morphological grounds they have been assessed as deuterostomes. Fossil finds of the "tommotiid" Wufengella suggest that they evolved from worm-like animals that resembled annelids.

<span class="mw-page-title-main">Trochozoa</span> Taxonomic clade

The Trochozoa are a proposed Lophotrochozoa clade that is a sister clade of Bryozoa and Platyzoa. The clade would include animals in five phyla: the Nemertea, the Annelida, the Mollusca, and the two Brachiozoan phyla, Brachiopoda and Phoronida. Both annelids and molluscs have been suggested as the sister group of Brachiozoa. It has also been proposed that nemerteans are actually a clade of annelids.

<span class="mw-page-title-main">Entoprocta</span> Phylum of aquatic invertebrates

Entoprocta, or Kamptozoa, is a phylum of mostly sessile aquatic animals, ranging from 0.1 to 7 millimetres long. Mature individuals are goblet-shaped, on relatively long stalks. They have a "crown" of solid tentacles whose cilia generate water currents that draw food particles towards the mouth, and both the mouth and anus lie inside the "crown". The superficially similar Bryozoa (Ectoprocta) have the anus outside a "crown" of hollow tentacles. Most families of entoprocts are colonial, and all but 2 of the 150 species are marine. A few solitary species can move slowly.

<span class="mw-page-title-main">Lophotrochozoa</span> Superphylum of animals

Lophotrochozoa is a clade of protostome animals within the Spiralia. The taxon was established as a monophyletic group based on molecular evidence. The clade includes animals like annelids, molluscs, bryozoans, and brachiopods.

<span class="mw-page-title-main">Lophophore</span>

The lophophore is a characteristic feeding organ possessed by four major groups of animals: the Brachiopoda, Bryozoa, Hyolitha, and Phoronida, which collectively constitute the protostome group Lophophorata. All lophophores are found in aquatic organisms.

<span class="mw-page-title-main">Integrin alpha 2</span> Mammalian protein found in Homo sapiens

Integrin alpha-2, or CD49b, is a protein which in humans is encoded by the CD49b gene.

<span class="mw-page-title-main">CBL (gene)</span> Mammalian gene

Cbl is a mammalian gene family. CBL gene, a part of the Cbl family, encodes the protein CBL which is an E3 ubiquitin-protein ligase involved in cell signalling and protein ubiquitination. Mutations to this gene have been implicated in a number of human cancers, particularly acute myeloid leukaemia.

<span class="mw-page-title-main">AKT2</span> Protein-coding gene in the species Homo sapiens

AKT2, also known as RAC-beta serine/threonine-protein kinase, is an enzyme that in humans is encoded by the AKT2 gene. It influences metabolite storage as part of the insulin signal transduction pathway.

<span class="mw-page-title-main">STK4</span> Protein-coding gene in the species Homo sapiens

Serine/threonine-protein kinase 4 is an enzyme that in humans is encoded by the STK4 gene.

<span class="mw-page-title-main">F2RL3</span> Protein-coding gene in the species Homo sapiens

Protease-activated receptor 4 (PAR-4), also known as coagulation factor II (thrombin) receptor-like 3, is a protein that in humans is encoded by the F2RL3 gene.

<span class="mw-page-title-main">CD81</span> Mammalian protein found in Homo sapiens

CD81 molecule, also known as CD81, is a protein which in humans is encoded by the CD81 gene. It is also known as 26 kDa cell surface protein, TAPA-1, and Tetraspanin-28 (Tspan-28).

<span class="mw-page-title-main">Signal-regulatory protein alpha</span> Protein-coding gene in the species Homo sapiens

Signal regulatory protein α (SIRPα) is a regulatory membrane glycoprotein from SIRP family expressed mainly by myeloid cells and also by stem cells or neurons.

<span class="mw-page-title-main">EIF3A</span> Protein-coding gene in the species Homo sapiens

Eukaryotic translation initiation factor 3 subunit A (eIF3a) is a protein that in humans is encoded by the EIF3A gene. It is one of the subunits of Eukaryotic initiation factor 3 (eIF3) a multiprotein complex playing major roles in translation initiation in eukaryotes.

<span class="mw-page-title-main">GJA8</span> Protein-coding gene in the species Homo sapiens

Gap junction alpha-8 protein is a protein that in humans is encoded by the GJA8 gene. It is also known as connexin 50.

<span class="mw-page-title-main">Phoronid</span> Phylum of marine animals

Phoronids are a small phylum of marine animals that filter-feed with a lophophore, and build upright tubes of chitin to support and protect their soft bodies. They live in most of the oceans and seas, including the Arctic Ocean but excluding the Antarctic Ocean, and between the intertidal zone and about 400 meters down. Most adult phoronids are 2 cm long and about 1.5 mm wide, although the largest are 50 cm long.

<span class="mw-page-title-main">Tommotiid</span> Extinct order of brachiopods

Tommotiids are an extinct group of Cambrian invertebrates thought to be early lophophorates.

<span class="mw-page-title-main">Spiralia</span> Clade of protostomes with spiral cleavage during early development

The Spiralia are a morphologically diverse clade of protostome animals, including within their number the molluscs, annelids, platyhelminths and other taxa. The term Spiralia is applied to those phyla that exhibit canonical spiral cleavage, a pattern of early development found in most members of the Lophotrochozoa.

James A. Lake is an American evolutionary biologist and a Distinguished Professor of Molecular, Cell, and Developmental Biology and of Human Genetics at UCLA. Lake is best known for the New Animal Phylogeny and for the first three-dimensional structure of the ribosome. He has also made significant contributions to understanding genome evolution across all kingdoms of life, including discovering informational and operational genes, elucidating the complexity hypothesis for gene transfer, rooting the tree of life, and understanding the early transition from prokaryotic to eukaryotic life.

<i>Wufengella</i> Extinct genus of invertebrates

Wufengella is a genus of extinct camenellan "tommotiid" that lived during the Early Cambrian. Described in 2022, the only species Wufengella bengtsonii was discovered from the Maotianshan Shales of Chiungchussu (Qiongzhusi) Formation in Yunnan, China. The fossil indicates that the animal was an armoured worm that close to the common ancestry of the phyla Phonorida, Brachiozoa and Bryozoa, which are collectively grouped into a clade called Lophophorata.

References

  1. Helmkampf M, Bruchhaus I, Hausdorf B (August 2008). "Phylogenomic analyses of lophophorates (brachiopods, phoronids and bryozoans) confirm the Lophotrochozoa concept". Proc. Biol. Sci. 275 (1645): 1927–33. doi:10.1098/rspb.2008.0372. PMC   2593926 . PMID   18495619.
  2. Jang KH, Hwang UW (21 April 2009). "Complete mitochondrial genome of Bugula neritina (Bryozoa, Gymnolaemata, Cheilostomata): phylogenetic position of Bryozoa and phylogeny of lophophorates within the Lophotrochozoa". BMC Genomics. 10: 167. doi: 10.1186/1471-2164-10-167 . PMC   2678162 . PMID   19379522.
  3. Cavalier-Smith T (August 1998). "A revised six-kingdom system of life". Biol Rev Camb Philos Soc. 73 (3): 203–66. doi:10.1111/j.1469-185X.1998.tb00030.x. PMID   9809012. S2CID   6557779.