Medusozoa

Last updated

Medusozoa
Temporal range: Ediacaran – present, 562 – 0  Ma
Sea nettles.jpg
Pacific sea nettles, Chrysaora fuscescens
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Cnidaria
Subphylum: Medusozoa
Classes [1]

Medusozoa is a clade in the phylum Cnidaria, and is often considered a subphylum. [2] [3] It includes the classes Hydrozoa, Scyphozoa, Staurozoa and Cubozoa, and possibly the parasitic Polypodiozoa. Medusozoans are distinguished by having a medusa stage in their often complex life cycle, a medusa typically being an umbrella-shaped body with stinging tentacles around the edge. [4] With the exception of some Hydrozoa (and Polypodiozoa), all are called jellyfish in their free-swimming medusa phase. [3] [5]

Contents

Evolution

The phylum Cnidaria is widely accepted as being monophyletic and consisting of two clades, Anthozoa and Medusozoa. Anthozoa includes the classes Hexacorallia, the hard corals, and Octocorallia, the soft corals, as well as Ceriantharia, the tube-dwelling anemones. There is strong support for this group having been the first to branch off from the ancestral line. [6]

Medusozoa includes the classes Staurozoa, Cubozoa, Scyphozoa and Hydrozoa, but the relationships between these are unclear. Analysis using ribosomal RNA subunits suggests that within Medusozoa, Staurozoa was the first group to diverge, with Cubozoa and Scyphozoa forming a clade, a sister group to Hydrozoa. Further study involving the order of mitochondrial genes supports this view, [6] and their possession of linear mitochondrial genomes is striking evidence of the monophyly of medusozoans. [7] The stem group of Medusozoa also includes Auroralumina attenboroughii , the earliest known animal predator from the late Ediacaran. [8] Burgessomedusa from the mid-Cambrian Burgess Shale is the oldest known free-living medusa (commonly known as jellyfish). [9]

The affinities of the class Polypodiozoa, containing the single species Polypodium hydriforme , have long been unclear. This species is an endoparasite of fish eggs and has a peculiar life cycle. It has traditionally been considered to be a cnidarian because of its possession of nematocysts, but molecular studies using 18S rDNA sequences have placed it closer to Myxozoa. Further studies involving 28S rDNA sequences suggest that it is either part of the hydrozoan clade Leptothecata, or a sister taxon to Hydrozoa, and does not group with myxozoans. [10]

Animalia

Ctenophora Comb jelly.jpg

Cnidaria

Anthozoa Actinostola 3.jpg

stemgroup Medusozoa

Estonian Museum of Natural History - Conularia.png

crowngroup Medusozoa

Bilateria Ikaria wariootia (detail).jpg

Characteristics

Medusozoans differ from anthozoans in having a medusa stage in their life cycle. The basic pattern is medusa (usually the adult or sexual phase), planula larva, polyp, medusa. Symmetry is tetramerous, with parts in fours or multiples of four. [11] The mitochondrial DNA molecules are linear rather than circular as in anthozoans and almost all other animals. [12] The cnidae, the explosive cells characteristic of the Cnidaria and used in prey capture and defence, are of a single type, there being nematocysts but no spirocysts or ptychocysts. [4] In contrast, the anthozoan life cycle involves a planula larva which settles and becomes a sessile polyp, which is the adult or sexual phase. [11]

Diversity

There is considerable divergence from the basic life cycle pattern among medusozoans. [11]

Scyphozoa is the group commonly known as "true jellyfish" and occur in tropical, temperate and polar seas worldwide. Scyphozoans generally have planula larvae that develop into sessile polyps. These reproduce asexually, producing similar polyps by budding, and then either transform into medusae, or repeatedly bud medusae from their upper surface in a process known as strobilation. [4]

Cubozoa is a group commonly known as box jellyfish, that occur in tropical and warm temperate seas. They have cube-shaped, transparent medusae and are heavily-armed with venomous nematocysts. Cubozoans have planula larvae, which settle and develop into sessile polyps, which subsequently metamorphose into sexual medusae, [11] the oral end of each polyp changing into a medusa which separates and swims away. [4]

Staurozoa is a small group commonly known as stalked jellyfish. The animals remain attached to the substrate by a stalk at the opposite end from the mouth. Staurozoans can be regarded as large polyps that have partially differentiated into sexually mature medusae. These spawn gametes which develop into non-swimming planulae that crawl away to new locations. [4]

Hydrozoa is a large group of solitary and colonial cnidarians from both marine and freshwater environments worldwide. Hydrozoans exhibit the greatest variety of life cycles among medusozoans, with either the polyp or the medusa stage being missing in some groups. [4] In general, medusae are budded laterally from polyps, become mature and spawn, releasing gametes into the water. The planulae may settle to become polyps or continue living in the water column as medusae. [11]

Related Research Articles

<span class="mw-page-title-main">Cnidaria</span> Aquatic animal phylum having cnydocytes

Cnidaria is a phylum under kingdom Animalia containing over 11,000 species of aquatic animals found both in fresh water and marine environments, including jellyfish, hydroids, sea anemones, corals and some of the smallest marine parasites. Their distinguishing features are a decentralized nervous system distributed throughout a gelatinous body and the presence of cnidocytes or cnidoblasts, specialized cells with ejectable flagella used mainly for envenomation and capturing prey. Their bodies consist of mesoglea, a non-living, jelly-like substance, sandwiched between two layers of epithelium that are mostly one cell thick. Cnidarians are also some of the only animals that can reproduce both sexually and asexually.

<span class="mw-page-title-main">Jellyfish</span> Soft-bodied, aquatic invertebrates

Jellyfish, also known as sea jellies, are the medusa-phase of certain gelatinous members of the subphylum Medusozoa, which is a major part of the phylum Cnidaria.

<span class="mw-page-title-main">Scyphozoa</span> Class of marine cnidarians, true jellyfish

The Scyphozoa are an exclusively marine class of the phylum Cnidaria, referred to as the true jellyfish.

<span class="mw-page-title-main">Box jellyfish</span> Class of cnidarians distinguished by their cube-shaped medusae

Box jellyfish are cnidarian invertebrates distinguished by their box-like body. Some species of box jellyfish produce potent venom delivered by contact with their tentacles. Stings from some species, including Chironex fleckeri, Carukia barnesi, Malo kingi, and a few others, are extremely painful and often fatal to humans.

<i>Aurelia aurita</i> Species of jellyfish

Aurelia aurita is a species of the family Ulmaridae. All species in the genus are very similar, and it is difficult to identify Aurelia medusae without genetic sampling; most of what follows applies equally to all species of the genus.

<span class="mw-page-title-main">Hydrozoa</span> Class of cnidarians

Hydrozoa is a taxonomic class of individually very small, predatory animals, some solitary and some colonial, most of which inhabit saline water. The colonies of the colonial species can be large, and in some cases the specialized individual animals cannot survive outside the colony. A few genera within this class live in freshwater habitats. Hydrozoans are related to jellyfish and corals and belong to the phylum Cnidaria.

<i>Obelia</i> Genus of hydrozoans

Obelia is a genus of hydrozoans, a class of mainly marine and some freshwater animal species that have both polyp and medusa stages in their life cycle. Hydrozoa belongs to the phylum Cnidaria, which are aquatic organisms that are relatively simple in structure with a diameter around 1mm. There are currently 120 known species, with more to be discovered. These species are grouped into three broad categories: O. bidentata, O. dichotoma, and O. geniculata. O. longissima was later accepted as a legitimate species, but taxonomy regarding the entire genus is debated over.

<span class="mw-page-title-main">Rhopalium</span>

Rhopalia from Ancient Greek ῥόπαλον (rhópalon) 'club' are small sensory structures of certain Scyphozoan and Cubozoan species.

A planula is the free-swimming, flattened, ciliated, bilaterally symmetric larval form of various cnidarian species and also in some species of Ctenophores, which are not related to cnidarians at all. Some groups of Nemerteans also produce larvae that are very similar to the planula, which are called planuliform larva. In a few cnidarian clades, like Aplanulata and the parasitic Myxozoa, the planula larval stage has been lost.

<span class="mw-page-title-main">Staurozoa</span> Class of jellyfishes

Staurozoa is a class of Medusozoa, jellyfishes and hydrozoans. It has one extant order: Stauromedusae with a total of 50 known species. A fossil group called Conulariida has been proposed as a second order, although this is highly speculative. The extinct order is largely unknown and described as a possibly cnidarian clade of marine life with shell-like structures, the Conulariida. Staurozoans are small animals that live in marine environments, usually attached to seaweeds, rocks, or gravel. They have a large antitropical distribution, a majority found in boreal or polar, near-shore, and shallow waters. Few staurozoans are found in warmer tropical and subtropical water environments of the Atlantic, Indian, and Pacific Ocean basins, but most are known from the Northern Hemisphere. Over the years the number of discovered species has increased, with an estimated 50 species currently recognized. Information on Staurozoa is sparse, and it is one of the least studied groups within Cnidaria. While often neglected, correctly recognizing the characteristics of this class is crucial for understanding cnidarian evolution.

<i>Phacellophora camtschatica</i> Species of jellyfish

Phacellophora camtschatica, commonly known as the fried egg jellyfish or egg-yolk jellyfish, is a very large jellyfish in the family Phacellophoridae. This species can be easily identified by the yellow coloration in the center of its body which closely resembles an egg yolk, hence its common name. Some individuals can have a bell close to 60 cm (2 ft) in diameter, and most individuals have 16 clusters of up to a few dozen tentacles, each up to 6 m (20 ft) long. A smaller jellyfish, Cotylorhiza tuberculata, typically found in warmer water, particularly in the Mediterranean Sea, is also popularly called a fried egg jellyfish. Also, P. camtschatica is sometimes confused with the Lion's mane jellyfish.

<i>Carybdea</i> Genus of jellyfishes

Carybdea is a genus of venomous box jellyfish within the family Carybdeidae that currently consists of a total of 8 species. This genus of jellyfish are often found in warm waters around the world in waters such as the Mediterranean Sea, the Pacific Ocean, and off the coast of Africa. Their sting can cause a range of effects depending on the species. These invertebrates will go through both sexual and asexual reproduction as they transform from a polyp to medusa. Carybdea have a box-shaped bell with four tentacles and eye-like sensory structures. There are distinct physical markings that differentiate many species within the genus. While Carybdea use their venom to act as predators, they are also preyed on by turtles and various fish. They feed on plankton, invertebrates, fish, and some crustaceans.

<i>Turritopsis dohrnii</i> Species of small, biologically immortal jellyfish

Turritopsis dohrnii, also known as the immortal jellyfish, is a species of small, biologically immortal jellyfish found worldwide in temperate to tropic waters. It is one of the few known cases of animals capable of reverting completely to a sexually immature, colonial stage after having reached sexual maturity as a solitary individual. Others include the jellyfish Laodicea undulata and species of the genus Aurelia.

<span class="mw-page-title-main">Hydroidolina</span> Subclass of hydrozoans

Hydroidolina is a subclass of Hydrozoa and makes up 90% of the class. Controversy surrounds who the sister groups of Hydroidolina are, but research has shown that three orders remain consistent as direct relatives: Siphonophorae, Anthoathecata, and Leptothecata.

<span class="mw-page-title-main">Leptothecata</span> Order of cnidarians with hydrothecae

Leptothecata, or thecate hydroids, are an order of hydrozoans in the phylum Cnidaria. Their closest living relatives are the athecate hydroids, which are similar enough to have always been considered closely related, and the very apomorphic Siphonophorae, which were placed outside the "Hydroida". Given that there are no firm rules for synonymy for high-ranked taxa, alternative names like Leptomedusa, Thecaphora or Thecata, with or without the ending emended to "-ae", are also often used for Leptothecata.

Calvadosia cruxmelitensis is a stalked jellyfish which inhabits the intertidal and sublittoral zones of rocky coasts in south-western England and the Atlantic coast of Ireland.

<i>Clytia hemisphaerica</i> Species of hydrozoan

Clytia hemisphaerica is a small hydrozoan-group cnidarian, about 1 cm in diameter, that is found in the Mediterranean Sea and the North-East Atlantic Ocean. Clytia has the free-swimming jellyfish form typical of the Hydrozoa, as well as vegetatively propagating polyps.

<i>Clava multicornis</i> Genus of hydrozoans

Clava is a monotypic genus of hydrozoans in the family Hydractiniidae. It contains only one accepted species, Clava multicornis. Other names synonymous with Clava multicornis include Clava cornea, Clava diffusa, Clava leptostyla, Clava nodosa, Clava parasitica, Clava squamata, Coryne squamata, Hydra multicornis, and Hydra squamata. The larvae form of the species has a well developed nervous system compared to its small size. The adult form is also advanced due to its ability to stay dormant during unfavorable periods.

Chiropsella bronzie is a species of box jellyfish. It is considered much less of a threat to humans than some of its relatives. The species was described in 2006, and is one of four species in the genus Chiropsella. Chiropsella bronzie can be found in shallow waters off the coast of Queensland, Australia.

<i>Tima nigroannulata</i> Species of hydrozoa

Tima nigroannulata, commonly known as the elegant jellyfish, is a recently discovered colonial hydrozoa found on the Pacific coast of Japan.

References

  1. Subphyla Medusozoa based on "The Taxonomicon – Taxon: Phylum Cnidaria". Universal Taxonomic Services. Archived from the original on 2007-09-29. Retrieved 2007-07-10.
  2. Marques, Antonio C.; Allen G. Collins (March 2004). "Cladistic analysis of Medusozoa and cnidarian evolution". Invertebrate Biology. 123 (1): 23–42. doi:10.1111/j.1744-7410.2004.tb00139.x.
  3. 1 2 Zapata, Felipe; Goetz, Freya E.; Smith, Stephen A.; et al. (2015). "Phylogenomic Analyses Support Traditional Relationships within Cnidaria". PLOS ONE. 10 (10): e0139068. Bibcode:2015PLoSO..1039068Z. doi: 10.1371/journal.pone.0139068 . PMC   4605497 . PMID   26465609.
  4. 1 2 3 4 5 6 Ruppert, Edward E.; Fox, Richard, S.; Barnes, Robert D. (2004). Invertebrate Zoology, 7th edition. Cengage Learning. p. 148. ISBN   978-81-315-0104-7.{{cite book}}: CS1 maint: multiple names: authors list (link)
  5. Kayal, Ehsan; Bentlage, Bastian; Sabrina Pankey, M.; et al. (2018). "Phylogenomics provides a robust topology of the major cnidarian lineages and insights on the origins of key organismal traits". BMC Evolutionary Biology. 18: 68. Bibcode:2018BMCEE..18...68K. doi: 10.1186/s12862-018-1142-0 . PMC   5932825 .
  6. 1 2 J. Wolfgang Wägele; Thomas Bartolomaeus (2014). Deep Metazoan Phylogeny: The Backbone of the Tree of Life: New insights from analyses of molecules, morphology, and theory of data analysis. De Gruyter. p. 67. ISBN   978-3-11-037296-0.
  7. Bridge, D.; Cunningham, C.W.; Schierwater, B.; et al. (1992). "Class–level relationships in the phylum Cnidaria: evidence from mitochondrial genome structure". Proceedings of the National Academy of Sciences USA. 89 (18): 8750–8753. Bibcode:1992PNAS...89.8750B. doi: 10.1073/pnas.89.18.8750 . PMC   49998 . PMID   1356268.
  8. Dunn, F. S.; Kenchington, C. G.; Parry, L. A.; Clark, J. W.; Kendall, R. S.; Wilby, P. R. (25 July 2022). "A crown-group cnidarian from the Ediacaran of Charnwood Forest, UK". Nature Ecology & Evolution. 6 (8): 1095–1104. Bibcode:2022NatEE...6.1095D. doi: 10.1038/s41559-022-01807-x . PMC   9349040 . PMID   35879540.
  9. Moon, Justin; Caron, Jean-Bernard; Moysiuk, Joseph (2023-08-09). "A macroscopic free-swimming medusa from the middle Cambrian Burgess Shale". Proceedings of the Royal Society B: Biological Sciences. 290 (2004). doi:10.1098/rspb.2022.2490. ISSN   0962-8452. PMC  10394413. PMID   37528711.
  10. Evans, Nathaniel M.; Lindner, Alberto; Raikova, Ekaterina V.; et al. (2008). "Phylogenetic placement of the enigmatic parasite, Polypodium hydriforme, within the Phylum Cnidaria". BMC Evolutionary Biology. 8 (139): 139. Bibcode:2008BMCEE...8..139E. doi: 10.1186/1471-2148-8-139 . PMC   2396633 . PMID   18471296.
  11. 1 2 3 4 5 Collins, A. G. (2002). "Phylogeny of Medusozoa and the evolution of cnidarian life cycles". Evolutionary Biology. 15 (3): 418–432. doi: 10.1046/j.1420-9101.2002.00403.x .
  12. Kayal, Ehsan; Bentlage, Bastian; Collins, Allen G.; et al. (2012). "Evolution of Linear Mitochondrial Genomes in Medusozoan Cnidarians". Genome Biology and Evolution. 4 (1): 1–12. doi:10.1093/gbe/evr123. PMC   3267393 . PMID   22113796.