Mitrate

Last updated

Mitrate
Temporal range: Cambrian–Carboniferous
(500–360 Ma) [1]
Haeckel Amphoridea-1a.jpg
Scientific classification Red Pencil Icon.png
Kingdom: Animalia
Phylum: Echinodermata
Class: Stylophora
Order: Mitrata
Jaekel, 1918

Mitrates are an extinct group of stem group echinoderms, which may be closely related to the hemichordates. Along with the cornutes, they form one half of the Stylophora.

Contents

Morphology

The organisms were a few millimetres long. [1] Like the echinoderms, they are covered in armour plates, each of which comprises a single crystal of calcite. This is one of the features they share with the latter group, along with a water vascular system, only discovered in 2019. [2] . However, they do not display the familiar fivefold symmetry that more recent echinoderms possess, instead being close to (but not fully) bilaterally symmetrical. [1] [3]

Their heads had two sides; one, flat, was covered with large "pavement-like" [1] plates, the other, convex, bore smaller plates. [1] Their tails were long and segmented, resembling the stalk of a crinoid or the arm of a brittlestar. [1] At the opposite end was a hole which may have been mouth or anus - or both. [1]

They also bear features reminiscent of pharyngeal slits, [4] a character lost in other echinoderms but present in hemichordates, [1] causing R.P.S. Jefferies to hold them as the ancestor of all chordates.

Behaviour

Mitrates ^ have been found with associated trace fossils. [5] [6] Their interpretation requires an understanding of how the animal was oriented in life; it's not agreed whether the convex side of the head was up or down, or indeed whether the "tail" was at the front or back of the organism. [1] The trace fossils suggest that they pulled themselves through the mud with their "tail", and were flat-side up. [1]

Notes

^ Rhenocystis latipedunculata

Related Research Articles

<span class="mw-page-title-main">Chordate</span> Phylum of animals having a dorsal nerve cord

A chordate is an animal of the phylum Chordata. All chordates possess, at some point during their larval or adult stages, five synapomorphies, or primary physical characteristics, that distinguish them from all the other taxa. These five synapomorphies include a notochord, dorsal hollow nerve cord, endostyle or thyroid, pharyngeal slits, and a post-anal tail. The name “chordate” comes from the first of these synapomorphies, the notochord, which plays a significant role in chordate structure and movement. Chordates are also bilaterally symmetric, have a coelom, possess a circulatory system, and exhibit metameric segmentation.

<span class="mw-page-title-main">Machaeridia (annelid)</span> Extinct class of annelid worms

Machaeridia is an extinct group of armoured, segmented annelid worms, known from the Early Ordovician to Carboniferous. It consists of three distinct families: the plumulitids, turrilepadids and lepidocoleids.

<span class="mw-page-title-main">Bilateria</span> Animals with embryonic bilateral symmetry

Bilateria is a group of animals, called bilaterians, with bilateral symmetry as an embryo. This also means they have a head and a tail, as well as a belly and a back. Nearly all are bilaterally symmetrical as adults as well; the most notable exception is the echinoderms, which achieve secondary pentaradial symmetry as adults, but are bilaterally symmetrical during embryonic development.

<span class="mw-page-title-main">Trace fossil</span> Geological record of biological activity

A trace fossil, also known as an ichnofossil, is a fossil record of biological activity but not the preserved remains of the plant or animal itself. Trace fossils contrast with body fossils, which are the fossilized remains of parts of organisms' bodies, usually altered by later chemical activity or mineralization. The study of such trace fossils is ichnology and is the work of ichnologists.

<span class="mw-page-title-main">Crown group</span> Monophyletic closure of a set of living species

In phylogenetics, the crown group or crown assemblage is a collection of species composed of the living representatives of the collection, the most recent common ancestor of the collection, and all descendants of the most recent common ancestor. It is thus a way of defining a clade, a group consisting of a species and all its extant or extinct descendants. For example, Neornithes (birds) can be defined as a crown group, which includes the most recent common ancestor of all modern birds, and all of its extant or extinct descendants.

<i>Bothriolepis</i> Diverse genus of placoderm fishes of the Devonian

Bothriolepis was a widespread, abundant and diverse genus of antiarch placoderms that lived during the Middle to Late Devonian period of the Paleozoic Era. Historically, Bothriolepis resided in an array of paleo-environments spread across every paleocontinent, including near shore marine and freshwater settings. Most species of Bothriolepis were characterized as relatively small, benthic, freshwater detritivores, averaging around 30 centimetres (12 in) in length. However, the largest species, B. rex, had an estimated bodylength of 170 centimetres (67 in). Although expansive with over 60 species found worldwide, comparatively Bothriolepis is not unusually more diverse than most modern bottom dwelling species around today.

<i>Cothurnocystis</i> Extinct genus of marine invertebrates

Cothurnocystis is a genus of small enigmatic echinoderms that lived during the Ordovician. Individual animals had a flat boot-shaped body and a thin rod-shaped appendage that may be a stem, or analogous to a foot or a tail. Fossils of Cothurnocystis species have been found in Nevada, Scotland, Czech Republic, France and Morocco.

<span class="mw-page-title-main">Stylophora</span> Extinct group of marine invertebrates

The stylophorans are an extinct, possibly polyphyletic group allied to the Paleozoic Era echinoderms, comprising the prehistoric cornutes and mitrates. It is synonymous with the subphylum Calcichordata. Their unusual appearances have led to a variety of very different reconstructions of their anatomy, how they lived, and their relationships to other organisms.

<span class="mw-page-title-main">Ambulacraria</span> Clade of deuterostomes containing echinoderms and hemichordates

Ambulacraria, or Coelomopora, is a clade of invertebrate phyla that includes echinoderms and hemichordates; a member of this group is called an ambulacrarian. Phylogenetic analysis suggests the echinoderms and hemichordates separated around 533 million years ago. The Ambulacraria are part of the deuterostomes, a larger clade that also includes the Chordata, Vetulicolia.

A number of assemblages bear fossil assemblages similar in character to that of the Burgess Shale. While many are also preserved in a similar fashion to the Burgess Shale, the term "Burgess Shale-type fauna" covers assemblages based on taxonomic criteria only.

The small shelly fauna, small shelly fossils (SSF), or early skeletal fossils (ESF) are mineralized fossils, many only a few millimetres long, with a nearly continuous record from the latest stages of the Ediacaran to the end of the Early Cambrian Period. They are very diverse, and there is no formal definition of "small shelly fauna" or "small shelly fossils". Almost all are from earlier rocks than more familiar fossils such as trilobites. Since most SSFs were preserved by being covered quickly with phosphate and this method of preservation is mainly limited to the late Ediacaran and early Cambrian periods, the animals that made them may actually have arisen earlier and persisted after this time span.

The Cambrian explosion, Cambrian radiation,Cambrian diversification, or the Biological Big Bang refers to an interval of time approximately 538.8 ± 0.2 million years ago in the Cambrian Period when practically all major animal phyla started appearing in the fossil record. It lasted for about 13 – 25 million years and resulted in the divergence of most modern metazoan phyla. The event was accompanied by major diversification in other groups of organisms as well.

<span class="mw-page-title-main">Deuterostome</span> Superphylum of bilateral animals

Deuterostomia are animals typically characterized by their anus forming before their mouth during embryonic development. The group's sister clade is Protostomia, animals whose digestive tract development is more varied. Some examples of deuterostomes include vertebrates, sea stars, and crinoids.

<span class="mw-page-title-main">Homalozoa</span> Extinct historic group of marine invertebrates

Homalozoa is an obsolete extinct subphylum of Paleozoic era echinoderms, prehistoric marine invertebrates. They are also referred to as carpoids.

<span class="mw-page-title-main">Fezouata Formation</span> Burgess shale-type deposits

The Fezouata Formation or Fezouata Shale is a geological formation in Morocco which dates to the Early Ordovician. It was deposited in a marine environment, and is known for its exceptionally preserved fossils, filling an important preservational window beyond the earlier and more common Cambrian Burgess shale-type deposits.

The calcichordate hypothesis holds that each separate lineage of chordate evolved from its own lineage of mitrate, and thus the echinoderms and the chordates are sister groups, with the hemichordates as an out-group.

<span class="mw-page-title-main">Stereom</span>

Stereom is a calcium carbonate material that makes up the internal skeletons found in all echinoderms, both living and fossilized forms. It is a sponge-like porous structure which, in a sea urchin may be 50% by volume living cells, and the rest being a matrix of calcite crystals. The size of openings in stereom varies in different species and in different places within the same organism. When an echinoderm becomes a fossil, microscopic examination is used to reveal the structure and such examination is often an important tool to classify the fossil as an echinoderm or related creature.

<span class="mw-page-title-main">Cincta</span> Extinct class of marine invertebrates

Cincta is an extinct class of echinoderms that lived only in the Middle Cambrian epoch. Homostelea is a junior synonym. The classification of cinctans is controversial, but they are probably part of the echinoderm stem group.

<span class="mw-page-title-main">Ctenocystoidea</span> Extinct clade of marine invertebrates

Ctenocystoidea is an extinct clade of echinoderms, which lived during the Cambrian and Ordovician periods. Unlike other echinoderms, ctenocystoids had bilateral symmetry, or were only very slightly asymmetrical. They are believed to be one of the earliest-diverging branches of echinoderms, with their bilateral symmetry a trait shared with other deuterostomes. Ctenocystoids were once classified in the taxon Homalozoa, also known as Carpoidea, alongside cinctans, solutes, and stylophorans. Homalozoa is now recognized as a polyphyletic group of echinoderms without radial symmetry. Ctenocystoids were geographically widespread during the Middle Cambrian, with one species surviving into the Late Ordovician.

<i>Yanjiahella</i> Extinct genus of marine invertebrates

Yanjiahella biscarpa is an extinct species of Early Cambrian deuterostome which may represent the earliest stem group echinoderms.

References

  1. 1 2 3 4 5 6 7 8 9 10 Gee, H. (2000). "Mitrates on the move". Nature. 407 (6806): 849–851. doi: 10.1038/35038193 . PMID   11057650.
  2. Lefebvre, Bertrand; Guensburg, Thomas E.; Martin, Emmanuel L. O.; Mooi, Rich; Nardin, Elise; Nohejlová, Martina; Saleh, Farid; Kouraïss, Khaoula; El Hariri, Khadija (2019-02-01). "Exceptionally preserved soft parts in fossils from the Lower Ordovician of Morocco clarify stylophoran affinities within basal deuterostomes". Geobios. 52: 27–36. doi: 10.1016/j.geobios.2018.11.001 . ISSN   0016-6995.
  3. "Palaeos Metazoa: Deuterostomia: Stylophora" . Retrieved 2023-03-04.
  4. Jefferies, R.P.S. (1986). The Ancestry of the Vertebrates. British Museum (Natural History).
  5. Sutcliffe, O.E.; Südkamp, W.H.; Jefferies, R.P.S. (2000). "Ichnological evidence on the behaviour of mitrates: two trails associated with the Devonian mitrate Rhenocystis". Lethaia. 33 (1): 1–12. doi:10.1080/00241160050150267.
  6. Rahman, I.A.; Jefferies, R.P.S.; Südkamp, W.H.; Smith, R.D.A. (2009). "Ichnological insights into mitrate palaeobiology". Palaeontology. 52 (1): 127–138. doi:10.1111/j.1475-4983.2008.00838.x.