Cantor's intersection theorem

Last updated

Cantor's intersection theorem refers to two closely related theorems in general topology and real analysis, named after Georg Cantor, about intersections of decreasing nested sequences of non-empty compact sets.

Contents

Topological statement

Theorem.Let be a topological space. A decreasing nested sequence of non-empty compact, closed subsets of has a non-empty intersection. In other words, supposing is a sequence of non-empty compact, closed subsets of S satisfying

it follows that

The closedness condition may be omitted in situations where every compact subset of is closed, for example when is Hausdorff.

Proof. Assume, by way of contradiction, that . For each , let . Since and , we have . Since the are closed relative to and therefore, also closed relative to , the , their set complements in , are open relative to .

Since is compact and is an open cover (on ) of , a finite cover can be extracted. Let . Then because , by the nesting hypothesis for the collection . Consequently, . But then , a contradiction.

Statement for real numbers

The theorem in real analysis draws the same conclusion for closed and bounded subsets of the set of real numbers . It states that a decreasing nested sequence of non-empty, closed and bounded subsets of has a non-empty intersection.

This version follows from the general topological statement in light of the Heine–Borel theorem, which states that sets of real numbers are compact if and only if they are closed and bounded. However, it is typically used as a lemma in proving said theorem, and therefore warrants a separate proof.

As an example, if , the intersection over is . On the other hand, both the sequence of open bounded sets and the sequence of unbounded closed sets have empty intersection. All these sequences are properly nested.

This version of the theorem generalizes to , the set of -element vectors of real numbers, but does not generalize to arbitrary metric spaces. For example, in the space of rational numbers, the sets

are closed and bounded, but their intersection is empty.

Note that this contradicts neither the topological statement, as the sets are not compact, nor the variant below, as the rational numbers are not complete with respect to the usual metric.

A simple corollary of the theorem is that the Cantor set is nonempty, since it is defined as the intersection of a decreasing nested sequence of sets, each of which is defined as the union of a finite number of closed intervals; hence each of these sets is non-empty, closed, and bounded. In fact, the Cantor set contains uncountably many points.

Theorem.Letbe a sequence of non-empty, closed, and bounded subsets ofsatisfying

Then,

Proof. Each nonempty, closed, and bounded subset admits a minimal element . Since for each , we have

,

it follows that

,

so is an increasing sequence contained in the bounded set . The monotone convergence theorem for bounded sequences of real numbers now guarantees the existence of a limit point

For fixed , for all , and since is closed and is a limit point, it follows that . Our choice of is arbitrary, hence belongs to and the proof is complete. ∎

Variant in complete metric spaces

In a complete metric space, the following variant of Cantor's intersection theorem holds.

Theorem.Suppose that is a complete metric space, and is a sequence of non-empty closed nested subsets of whose diameters tend to zero:

where is defined by

Then the intersection of the contains exactly one point:

for some .

Proof (sketch). Since the diameters tend to zero, the diameter of the intersection of the is zero, so it is either empty or consists of a single point. So it is sufficient to show that it is not empty. Pick an element for each . Since the diameter of tends to zero and the are nested, the form a Cauchy sequence. Since the metric space is complete this Cauchy sequence converges to some point . Since each is closed, and is a limit of a sequence in , must lie in . This is true for every , and therefore the intersection of the must contain . ∎

A converse to this theorem is also true: if is a metric space with the property that the intersection of any nested family of non-empty closed subsets whose diameters tend to zero is non-empty, then is a complete metric space. (To prove this, let be a Cauchy sequence in , and let be the closure of the tail of this sequence.)

See also

Related Research Articles

In mathematical analysis, a metric space M is called complete if every Cauchy sequence of points in M has a limit that is also in M.

In mathematics, the branch of real analysis studies the behavior of real numbers, sequences and series of real numbers, and real functions. Some particular properties of real-valued sequences and functions that real analysis studies include convergence, limits, continuity, smoothness, differentiability and integrability.

<span class="mw-page-title-main">Limit inferior and limit superior</span> Bounds of a sequence

In mathematics, the limit inferior and limit superior of a sequence can be thought of as limiting bounds on the sequence. They can be thought of in a similar fashion for a function. For a set, they are the infimum and supremum of the set's limit points, respectively. In general, when there are multiple objects around which a sequence, function, or set accumulates, the inferior and superior limits extract the smallest and largest of them; the type of object and the measure of size is context-dependent, but the notion of extreme limits is invariant. Limit inferior is also called infimum limit, limit infimum, liminf, inferior limit, lower limit, or inner limit; limit superior is also known as supremum limit, limit supremum, limsup, superior limit, upper limit, or outer limit.

In mathematics, a topological vector space is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is also a topological space with the property that the vector space operations are also continuous functions. Such a topology is called a vector topology and every topological vector space has a uniform topological structure, allowing a notion of uniform convergence and completeness. Some authors also require that the space is a Hausdorff space. One of the most widely studied categories of TVSs are locally convex topological vector spaces. This article focuses on TVSs that are not necessarily locally convex. Banach spaces, Hilbert spaces and Sobolev spaces are other well-known examples of TVSs.

In real analysis the Heine–Borel theorem, named after Eduard Heine and Émile Borel, states:

In the mathematical field of real analysis, the monotone convergence theorem is any of a number of related theorems proving the good convergence behaviour of monotonic sequences, i.e. sequences that are non-increasing, or non-decreasing. In its simplest form, it says that a non-decreasing bounded-above sequence of real numbers converges to its smallest upper bound, its supremum. Likewise, a non-increasing bounded-below sequence converges to its largest lower bound, its infimum. In particular, infinite sums of non-negative numbers converge to the supremum of the partial sums if and only if the partial sums are bounded.

In mathematics, the uniform boundedness principle or Banach–Steinhaus theorem is one of the fundamental results in functional analysis. Together with the Hahn–Banach theorem and the open mapping theorem, it is considered one of the cornerstones of the field. In its basic form, it asserts that for a family of continuous linear operators whose domain is a Banach space, pointwise boundedness is equivalent to uniform boundedness in operator norm.

<span class="mw-page-title-main">Extreme value theorem</span> Continuous real function on a closed interval has a maximum and a minimum

In calculus, the extreme value theorem states that if a real-valued function is continuous on the closed and bounded interval , then must attain a maximum and a minimum, each at least once. That is, there exist numbers and in such that:

In mathematics, the limit of a sequence of sets is a set whose elements are determined by the sequence in either of two equivalent ways: (1) by upper and lower bounds on the sequence that converge monotonically to the same set and (2) by convergence of a sequence of indicator functions which are themselves real-valued. As is the case with sequences of other objects, convergence is not necessary or even usual.

In general topology, a branch of mathematics, a non-empty family A of subsets of a set is said to have the finite intersection property (FIP) if the intersection over any finite subcollection of is non-empty. It has the strong finite intersection property (SFIP) if the intersection over any finite subcollection of is infinite. Sets with the finite intersection property are also called centered systems and filter subbases.

In mathematics, Hausdorff measure is a generalization of the traditional notions of area and volume to non-integer dimensions, specifically fractals and their Hausdorff dimensions. It is a type of outer measure, named for Felix Hausdorff, that assigns a number in [0,∞] to each set in or, more generally, in any metric space.

In functional analysis and related branches of mathematics, the Banach–Alaoglu theorem states that the closed unit ball of the dual space of a normed vector space is compact in the weak* topology. A common proof identifies the unit ball with the weak-* topology as a closed subset of a product of compact sets with the product topology. As a consequence of Tychonoff's theorem, this product, and hence the unit ball within, is compact.

In mathematics, more precisely in measure theory, an atom is a measurable set which has positive measure and contains no set of smaller positive measures. A measure which has no atoms is called non-atomic or atomless.

In real analysis and complex analysis, branches of mathematics, the identity theorem for analytic functions states: given functions f and g analytic on a domain D, if f = g on some , where has an accumulation point in D, then f = g on D.

<span class="mw-page-title-main">Nested intervals</span>

In mathematics, a sequence of nested intervals can be intuitively understood as an ordered collection of intervals on the real number line with natural numbers as an index. In order for a sequence of intervals to be considered nested intervals, two conditions have to be met:

  1. Every interval in the sequence is contained in the previous one.
  2. The length of the intervals get arbitrarily small.

In mathematics, the Artin–Rees lemma is a basic result about modules over a Noetherian ring, along with results such as the Hilbert basis theorem. It was proved in the 1950s in independent works by the mathematicians Emil Artin and David Rees; a special case was known to Oscar Zariski prior to their work.

In mathematics, the Vitali covering lemma is a combinatorial and geometric result commonly used in measure theory of Euclidean spaces. This lemma is an intermediate step, of independent interest, in the proof of the Vitali covering theorem. The covering theorem is credited to the Italian mathematician Giuseppe Vitali. The theorem states that it is possible to cover, up to a Lebesgue-negligible set, a given subset E of Rd by a disjoint family extracted from a Vitali covering of E.

In mathematics, Kuratowski convergence or Painlevé-Kuratowski convergence is a notion of convergence for subsets of a topological space. First introduced by Paul Painlevé in lectures on mathematical analysis in 1902, the concept was popularized in texts by Felix Hausdorff and Kazimierz Kuratowski. Intuitively, the Kuratowski limit of a sequence of sets is where the sets "accumulate".

In mathematics, the packing dimension is one of a number of concepts that can be used to define the dimension of a subset of a metric space. Packing dimension is in some sense dual to Hausdorff dimension, since packing dimension is constructed by "packing" small open balls inside the given subset, whereas Hausdorff dimension is constructed by covering the given subset by such small open balls. The packing dimension was introduced by C. Tricot Jr. in 1982.

In functional analysis and related areas of mathematics, a metrizable topological vector space (TVS) is a TVS whose topology is induced by a metric. An LM-space is an inductive limit of a sequence of locally convex metrizable TVS.

References