Carl F. Jordan | |
---|---|
Academic background | |
Alma mater | Rutgers University |
Carl F. Jordan is Professor Emeritus, Odum School of Ecology, University of Georgia. [1] [2]
Jordan graduated with a B.Sc. from the University of Michigan in 1958. From 1958 to 1962 he served in the U.S. Navy as a Combat Information Center Officer. In 1962, he enrolled in graduate school at Rutgers University and received his M.Sc. in Plant Ecology in 1964. He acquired his Ph.D. in 1966.
Jordan joined Howard Odum in an Atomic Energy Commission project in Puerto Rico in 1966 and applied the cycling concept to the dynamics of radioactive isotopes in the rain forest, for which he was awarded the Ecological Society of America’s Mercer award. In 1969, Jordan moved to Argonne National Laboratory where he continued to study radioactive pollution from nuclear power plants around Lake Michigan. In 1974, he led a project for the University of Georgia near San Carlos de Río Negro in the Amazon Region of Venezuela. During this time he focused on determining how forests of the Amazon survived on the nutrient-poor soils and could even flourish and support shifting cultivation. His research showed that nutrients from decaying organic matter on the forest floor recycled directly back into the roots of living trees. As long as the cycle was intact, the forest flourished, but destruction by agriculture or grazing cut the cycle and destroyed productive capacity.
In 1980, he returned to the University of Georgia. He began taking graduate students, while continuing his research in San Carlos, and expanding it to Brazil, Ecuador, and Thailand. Most notable projects were studies in Brazil of the Jari Plantation in Brazil, a pulp plantation of hundreds of square miles, and rehabilitation of the forests around the Carajas mines in central Amazonia. The primary concentration in all these studies was the importance of preserving the soil organic matter to keep the nutrient cycle intact and functioning.
In 1993, Jordan acquired a farm near Athens Georgia that had once been part of a pre-Civil cotton plantation and began research on more sustainable ways to manage organic agriculture. He originated the first University course in Georgia on organic farming, and opened the farm to tours and classes interested in sustainable agriculture. By 2017, more than 20,000 students had toured the farm. Jordan retired as Professor Emeritus in 2009.
An ecosystem is a system that environments and their organisms form through their interaction. The biotic and abiotic components are linked together through nutrient cycles and energy flows.
Pioneer species are resilient species that are the first to colonize barren environments, or to repopulate disrupted biodiverse steady-state ecosystems as part of ecological succession. A number of kinds of events can create good conditions for pioneers, including disruption by natural disasters, such as wildfire, flood, mudslide, lava flow or a climate-related extinction event or by anthropogenic habitat destruction, such as through land clearance for agriculture or construction or industrial damage. Pioneer species play an important role in creating soil in primary succession, and stabilizing soil and nutrients in secondary succession.
Tropical rainforests are dense and warm rainforests with high rainfall typically found between 10 degrees north and south of the equator. They are a subset of the tropical forest biome that occurs roughly within the 28-degree latitudes. Tropical rainforests are a type of tropical moist broadleaf forest, that includes the more extensive seasonal tropical forests. True rainforests usually occur in tropical rainforest climates where there is no dry season – all months have an average precipitation of at least 60 mm. Seasonal tropical forests with tropical monsoon or savanna climates are sometimes included in the broader definition.
Agroforestry is a land use management system that integrates trees with crops or pasture. It combines agricultural and forestry technologies. As a polyculture system, an agroforestry system can produce timber and wood products, fruits, nuts, other edible plant products, edible mushrooms, medicinal plants, ornamental plants, animals and animal products, and other products from both domesticated and wild species.
A secondary forest is a forest or woodland area which has regenerated through largely natural processes after human-caused disturbances, such as timber harvest or agriculture clearing, or equivalently disruptive natural phenomena. It is distinguished from an old-growth forest, which has not recently undergone such disruption, and complex early seral forest, as well as third-growth forests that result from harvest in second growth forests. Secondary forest regrowing after timber harvest differs from forest regrowing after natural disturbances such as fire, insect infestation, or windthrow because the dead trees remain to provide nutrients, structure, and water retention after natural disturbances. Secondary forests are notably different from primary forests in their composition and biodiversity; however, they may still be helpful in providing habitat for native species, preserving watersheds, and restoring connectivity between ecosystems.
Terra preta is a type of very dark, fertile anthropogenic soil (anthrosol) found in the Amazon Basin. It is also known as "Amazonian dark earth" or "Indian black earth". In Portuguese its full name is terra preta do índio or terra preta de índio. Terra mulata is lighter or brownish in color.
Attalea maripa, commonly called maripa palm is a palm native to tropical South America and Trinidad and Tobago. It grows up 35 m (115 ft) tall and can have leaves or fronds 10–12 m (33–39 ft) long. This plant has a yellow edible fruit which is oblong ovoid and cream. An edible oil can be extracted from the pulp of the fruit and from the kernel of the seed.
An oligotroph is an organism that can live in an environment that offers very low levels of nutrients. They may be contrasted with copiotrophs, which prefer nutritionally rich environments. Oligotrophs are characterized by slow growth, low rates of metabolism, and generally low population density. Oligotrophic environments are those that offer little to sustain life. These environments include deep oceanic sediments, caves, glacial and polar ice, deep subsurface soil, aquifers, ocean waters, and leached soils.
Human impact on the nitrogen cycle is diverse. Agricultural and industrial nitrogen (N) inputs to the environment currently exceed inputs from natural N fixation. As a consequence of anthropogenic inputs, the global nitrogen cycle (Fig. 1) has been significantly altered over the past century. Global atmospheric nitrous oxide (N2O) mole fractions have increased from a pre-industrial value of ~270 nmol/mol to ~319 nmol/mol in 2005. Human activities account for over one-third of N2O emissions, most of which are due to the agricultural sector. This article is intended to give a brief review of the history of anthropogenic N inputs, and reported impacts of nitrogen inputs on selected terrestrial and aquatic ecosystems.
The forest floor, also called detritus or duff, is the part of a forest ecosystem that mediates between the living, aboveground portion of the forest and the mineral soil, principally composed of dead and decaying plant matter such as rotting wood and shed leaves. In some countries, like Canada, forest floor refers to L, F and H organic horizons. It hosts a wide variety of decomposers and predators, including invertebrates, fungi, algae, bacteria, and archaea.
Plant litter is dead plant material that have fallen to the ground. This detritus or dead organic material and its constituent nutrients are added to the top layer of soil, commonly known as the litter layer or O horizon. Litter is an important factor in ecosystem dynamics, as it is indicative of ecological productivity and may be useful in predicting regional nutrient cycling and soil fertility.
Igapó is a word used in Brazil for blackwater-flooded forests in the Amazon biome. These forests and similar swamp forests are seasonally inundated with freshwater. They typically occur along the lower reaches of rivers and around freshwater lakes. Freshwater swamp forests are found in a range of climate zones, from boreal through temperate and subtropical to tropical. In the Amazon Basin of Brazil, a seasonally whitewater-flooded forest is known as a várzea, which is similar to igapó in many regards; the key difference between the two habitats is in the type of water that floods the forest.
A nutrient cycle is the movement and exchange of inorganic and organic matter back into the production of matter. Energy flow is a unidirectional and noncyclic pathway, whereas the movement of mineral nutrients is cyclic. Mineral cycles include the carbon cycle, sulfur cycle, nitrogen cycle, water cycle, phosphorus cycle, oxygen cycle, among others that continually recycle along with other mineral nutrients into productive ecological nutrition.
A várzea forest is a seasonal floodplain forest inundated by whitewater rivers that occurs in the Amazon biome. Until the late 1970s, the definition was less clear and várzea was often used for all periodically flooded Amazonian forests.
Katherine Carter Ewel is a Professor Emeritus at the University of Florida's School of Forest Resources and Conservation. She is an ecosystem, forest, and wetlands ecologist who has worked in Florida for much of her career, focusing much of it on cypress swamps, pine plantations, and mangrove forests in the Pacific. Ewel served as the vice-president of the Society of Wetland Scientists in 2003, becoming president in 2004 and now since 2005, a past president. She has now retired and lives near Gainesville, Florida.
Whendee Silver is an American ecosystem ecologist and biogeochemist.
John Jeffrey Ewel is an emeritus professor and tropical succession researcher in the department of biology at the University of Florida. Most of his research was conducted through experimental trials to understand ecosystem processes in terrestrial and tropical environments. The results of the research provided the ability to further comprehend forest structure and management, as well as its nutrient dynamics. The primary research conducted dealt with the beginning stages of the regrowth and recovery following agriculture practices. Ewel also participated in studies regarding invasive species and restoration ecology.
Tana Elaine Wood is a biogeochemist and ecosystem scientist with a focus in land-use and climate change. Her research is focused on looking into how these issues affect tropical forested ecosystems and particularly focuses on soil science and below ground research efforts.
The term humus form is not the same as the term humus. Forest humus form describes the various arrangement of organic and mineral horizons at the top of soil profiles. It can be composed entirely of organic horizons, meaning an absence of the mineral horizon. Experts worldwide have developed different types of classifications over time, and humus forms are mainly categorized into mull, mor, and moder orders in the ecosystems of British Columbia. Mull humus form is distinguishable from the other two forms in formation, nutrient cycling, productivity, etc.
The Tropical Wet Forests are a Level I ecoregion of North America designated by the Commission for Environmental Cooperation (CEC) in its North American Environmental Atlas. As the CEC consists only of Mexico, the United States, and Canada, the defined ecoregion does not extend outside these countries to Central America nor the Caribbean.