In elementary arithmetic, a carry is a digit that is transferred from one column of digits to another column of more significant digits. It is part of the standard algorithm to add numbers together by starting with the rightmost digits and working to the left. For example, when 6 and 7 are added to make 13, the "3" is written to the same column and the "1" is carried to the left. When used in subtraction the operation is called a borrow.
Carrying is emphasized in traditional mathematics, while curricula based on reform mathematics do not emphasize any specific method to find a correct answer.[ citation needed ]
Carrying makes a few appearances in higher mathematics as well. In computing, carrying is an important function of adder circuits.
A typical example of carry is in the following pencil-and-paper addition:
1 27 + 59 ---- 86
7 + 9 = 16, and the digit 1 is the carry.
The opposite is a borrow, as in
−1 47 − 19 ---- 28
Here, 7 − 9 = −2, so try (10 − 9) + 7 = 8, and the 10 is got by taking ("borrowing") 1 from the next digit to the left. There are two ways in which this is commonly taught:
The examples and perspective in this section deal primarily with the United States and do not represent a worldwide view of the subject.(January 2009) |
Traditionally, carry is taught in the addition of multi-digit numbers in the 2nd or late first year of elementary school. However, since the late 20th century, many widely adopted curricula developed in the United States such as TERC omitted instruction of the traditional carry method in favor of invented arithmetic methods, and methods using coloring, manipulatives, and charts. Such omissions were criticized by such groups as Mathematically Correct, and some states and districts have since abandoned this experiment, though it remains widely used.[ citation needed ]
Kummer's theorem states that the number of carries involved in adding two numbers in base is equal to the exponent of the highest power of dividing a certain binomial coefficient.
When several random numbers of many digits are added, the statistics of the carry digits bears an unexpected connection with Eulerian numbers and the statistics of riffle shuffle permutations. [1] [2] [3] [4]
In abstract algebra, the carry operation for two-digit numbers can be formalized using the language of group cohomology. [5] [6] [7] This viewpoint can be applied to alternative characterizations of the real numbers. [8] [9]
Carry represents one of the basic challenges facing designers and builders of mechanical calculators. They face two basic difficulties: The first one stems from the fact that a carry can require several digits to change: in order to add 1 to 999, the machine has to increment 4 different digits. Another challenge is the fact that the carry can "develop" before the next digit finished the addition operation.
Most mechanical calculators implement carry by executing a separate carry cycle after the addition itself. During the addition, each carry is "signaled" rather than performed, and during the carry cycle, the machine increments the digits above the "triggered" digits. This operation has to be performed sequentially, starting with the ones digit, then the tens, the hundreds, and so on, since adding the carry can generate a new carry in the next digit.
Some machines, notably Pascal's calculator, the second known calculator to be built, and the oldest surviving, use a different method: incrementing the digit from 0 to 9, cocks a mechanical device to store energy, and the next increment, which moves the digit from 9 to 0, releases this energy to increment the next digit by 1. Pascal used weights and gravity in his machine. Another notable machine using similar method is the highly successful 19th century Comptometer, which replaced the weights with springs.
Some innovative machines use continuous transmission: adding 1 to any digit, advances the next one by 1/10 (which in turn advances the next one by 1/100 and so on). Some innovative early calculators, notably Chebyshev calculator from 1870, [10] and a design by Selling, [11] from 1886, used this method, but neither were successful. In the early 1930, Marchant calculator implemented continuous transmission with great success, starting with the aptly named "Silent Speed" calculator. Marchant (later to become SCM Corporation) continued to use and improve it, and made continuous-transmission calculators with unmatched speed, into the late 1960s, to the end of the mechanical calculator era.
When speaking of a digital circuit like an adder, the word carry is used in a similar sense.
In most computers, the carry from the most significant bit of an arithmetic operation (or bit shifted out from a shift operation) is placed in a special carry bit which can be used as a carry-in for multiple precision arithmetic or tested and used to control execution of a computer program. The same carry bit is also generally used to indicate borrows in subtraction, though the bit's meaning is inverted due to the effects of two's complement arithmetic. Normally, a carry bit value of "1" signifies that an addition overflowed the ALU, and must be accounted for when adding data words of lengths greater than that of the CPU. For subtractive operations, two (opposite) conventions are employed as most machines set the carry flag on borrow while some machines (such as the 6502 and the PIC) instead reset the carry flag on borrow (and vice versa).
A carry can lead to integer overflow.
Arithmetic is an elementary branch of mathematics that studies numerical operations like addition, subtraction, multiplication, and division. In a wider sense, it also includes exponentiation, extraction of roots, and taking logarithms.
An electronic calculator is typically a portable electronic device used to perform calculations, ranging from basic arithmetic to complex mathematics.
A difference engine is an automatic mechanical calculator designed to tabulate polynomial functions. It was designed in the 1820s, and was first created by Charles Babbage. The name difference engine is derived from the method of divided differences, a way to interpolate or tabulate functions by using a small set of polynomial co-efficients. Some of the most common mathematical functions used in engineering, science and navigation are built from logarithmic and trigonometric functions, which can be approximated by polynomials, so a difference engine can compute many useful tables.
In mathematics, a multiplication table is a mathematical table used to define a multiplication operation for an algebraic system.
A multiplication algorithm is an algorithm to multiply two numbers. Depending on the size of the numbers, different algorithms are more efficient than others. Numerous algorithms are known and there has been much research into the topic.
Addition is one of the four basic operations of arithmetic, the other three being subtraction, multiplication and division. The addition of two whole numbers results in the total amount or sum of those values combined. The example in the adjacent image shows two columns of three apples and two apples each, totaling at five apples. This observation is equivalent to the mathematical expression "3 + 2 = 5".
Subtraction is one of the four arithmetic operations along with addition, multiplication and division. Subtraction is an operation that represents removal of objects from a collection. For example, in the adjacent picture, there are 5 − 2 peaches—meaning 5 peaches with 2 taken away, resulting in a total of 3 peaches. Therefore, the difference of 5 and 2 is 3; that is, 5 − 2 = 3. While primarily associated with natural numbers in arithmetic, subtraction can also represent removing or decreasing physical and abstract quantities using different kinds of objects including negative numbers, fractions, irrational numbers, vectors, decimals, functions, and matrices.
A binary number is a number expressed in the base-2 numeral system or binary numeral system, a method for representing numbers that uses only two symbols for the natural numbers: typically "0" (zero) and "1" (one). A binary number may also refer to a rational number that has a finite representation in the binary numeral system, that is, the quotient of an integer by a power of two.
Two's complement is the most common method of representing signed integers on computers, and more generally, fixed point binary values. Two's complement uses the binary digit with the greatest value as the sign to indicate whether the binary number is positive or negative; when the most significant bit is 1 the number is signed as negative and when the most significant bit is 0 the number is signed as positive. As a result, non-negative numbers are represented as themselves: 6 is 0110, zero is 0000, and -6 is 1010. Note that while the number of binary bits is fixed throughout a computation it is otherwise arbitrary.
In mathematics and computing, the method of complements is a technique to encode a symmetric range of positive and negative integers in a way that they can use the same algorithm for addition throughout the whole range. For a given number of places half of the possible representations of numbers encode the positive numbers, the other half represents their respective additive inverses. The pairs of mutually additive inverse numbers are called complements. Thus subtraction of any number is implemented by adding its complement. Changing the sign of any number is encoded by generating its complement, which can be done by a very simple and efficient algorithm. This method was commonly used in mechanical calculators and is still used in modern computers. The generalized concept of the radix complement is also valuable in number theory, such as in Midy's theorem.
A mechanical calculator, or calculating machine, is a mechanical device used to perform the basic operations of arithmetic automatically, or (historically) a simulation such as an analog computer or a slide rule. Most mechanical calculators were comparable in size to small desktop computers and have been rendered obsolete by the advent of the electronic calculator and the digital computer.
Mental calculation consists of arithmetical calculations using only the human brain, with no help from any supplies or devices such as a calculator. People may use mental calculation when computing tools are not available, when it is faster than other means of calculation, or even in a competitive context. Mental calculation often involves the use of specific techniques devised for specific types of problems. People with unusually high ability to perform mental calculations are called mental calculators or lightning calculators.
In computer science, arbitrary-precision arithmetic, also called bignum arithmetic, multiple-precision arithmetic, or sometimes infinite-precision arithmetic, indicates that calculations are performed on numbers whose digits of precision are potentially limited only by the available memory of the host system. This contrasts with the faster fixed-precision arithmetic found in most arithmetic logic unit (ALU) hardware, which typically offers between 8 and 64 bits of precision.
The suanpan, also spelled suan pan or souanpan) is an abacus of Chinese origin, earliest first known written documentation of the Chinese abacus dates to the 2nd century BCE during the Han dynasty, and later, described in a 190 CE book of the Eastern Han dynasty, namely Supplementary Notes on the Art of Figures written by Xu Yue. However, the exact design of this suanpan is not known. Usually, a suanpan is about 20 cm (8 in) tall and it comes in various widths depending on the application. It usually has more than seven rods. There are two beads on each rod in the upper deck and five beads on each rod in the bottom deck. The beads are usually rounded and made of a hardwood. The beads are counted by moving them up or down towards the beam. The suanpan can be reset to the starting position instantly by a quick jerk around the horizontal axis to spin all the beads away from the horizontal beam at the center.
Elementary arithmetic is a branch of mathematics involving addition, subtraction, multiplication, and division. Due to its low level of abstraction, broad range of application, and position as the foundation of all mathematics, elementary arithmetic is generally the first branch of mathematics taught in schools.
Pascal's calculator is a mechanical calculator invented by Blaise Pascal in 1642. Pascal was led to develop a calculator by the laborious arithmetical calculations required by his father's work as the supervisor of taxes in Rouen. He designed the machine to add and subtract two numbers directly and to perform multiplication and division through repeated addition or subtraction.
In elementary arithmetic, a standard algorithm or method is a specific method of computation which is conventionally taught for solving particular mathematical problems. These methods vary somewhat by nation and time, but generally include exchanging, regrouping, long division, and long multiplication using a standard notation, and standard formulas for average, area, and volume. Similar methods also exist for procedures such as square root and even more sophisticated functions, but have fallen out of the general mathematics curriculum in favor of calculators. As to standard algorithms in elementary mathematics, Fischer et al. (2019) state that advanced students use standard algorithms more effectively than peers who use these algorithms unreasoningly. That said, standard algorithms, such as addition, subtraction, as well as those mentioned above, represent central components of elementary math.
Decimal floating-point (DFP) arithmetic refers to both a representation and operations on decimal floating-point numbers. Working directly with decimal (base-10) fractions can avoid the rounding errors that otherwise typically occur when converting between decimal fractions and binary (base-2) fractions.
A mechanical computer is a computer built from mechanical components such as levers and gears rather than electronic components. The most common examples are adding machines and mechanical counters, which use the turning of gears to increment output displays. More complex examples could carry out multiplication and division—Friden used a moving head which paused at each column—and even differential analysis. One model, the Ascota 170 accounting machine sold in the 1960s, calculated square roots.
In computing, an arithmetic logic unit (ALU) is a combinational digital circuit that performs arithmetic and bitwise operations on integer binary numbers. This is in contrast to a floating-point unit (FPU), which operates on floating point numbers. It is a fundamental building block of many types of computing circuits, including the central processing unit (CPU) of computers, FPUs, and graphics processing units (GPUs).