The Cary Model 14 UV-VIS Spectrophotometer was a double beam recording spectrophotometer designed to operate over the wide spectral range of ultraviolet, visible and near infrared wavelengths (UV/Vis/NIR). This included wavelengths ranging from 185 nanometers to 870 nanometers. [1] (The Cary Model 14B, almost identical in exterior appearance, measured wavelengths from .5 to 6.0 microns.) [2]
The Cary 14 spectrophotometer was first produced in 1954 by the Applied Physics Corporation, which later was named the Cary Instruments Corporation after co-founder Howard Cary. [1] The instrument was a successor to the Cary 11, which was the first commercially available recording UV/Vis spectrophotometer. [3] It was produced until 1980, and refurbished models can still be obtained.
The double beam design of the Cary 14 provided rapid, simplified analysis by simultaneously measuring the transmittance of both the sample and the reference over the entire spectral range. [3] [4] The optics of the Cary 14 were a key feature. [5] The double monochromator in particular was described and patented. [6] The Cary 14 was one of the first instruments to incorporate high-quality gratings into its monochromators. [7]
To take readings in the ultraviolet or visible range, either a deuterium or tungsten lamp was used, with the light focussed into the entrance slit. The light passed through the first monochromator, which used a 30° Littrow prism, through the intermediate slit, and then into the second monochromator, which used an echelette grating with 6000 grooves/cm, to the exit slit. The beam from the monochromator then reflected from a rotating semicircular mirror and beam chopper, sending the light alternately into compartments for the sample and the reference, separated by dark periods. The beams from the sample and reference alternately registered on the single photomultiplier (pmt) detector, with the pmt output in the dark intervals subtracted from both measurements. The measured absorption or transmittance was calculated from the difference in the dark-corrected sample and reference measurements. [7]
To take readings in the near infrared, a tungsten ribbon-filament lamp was used instead of the photomultiplier tube. An additional mirror was used to direct the light beam onto a lead sulfide photoconductive cell and reverse the light's path through the monochromators. [7]
The instrument had a built-in chart recorder for displaying the analog signal on paper. [1] By using a double-pen mechanism, an effective chart width of 20 inches could be obtained. [7] The original hydrogen discharge lamp was water cooled. [8] Samples and reference solvent were held in the sample chambers by a variety of means, most typically using 1 centimeter pathlength cuvettes made of glass or quartz. [9]
By combining the Littrow prism and the echelette grating, the Cary design minimized noise and interference (stray light) while obtaining high resolution measurements over a very wide dynamic range. [10] [11] When used in double-beam mode, the instrument was almost entirely free from Wood’s anomalies and other artifacts. [12] A series of publications in the scholarly literature validated the optical quality of the Cary 14, [13] [14] including benchmarking with the Beckman DU Spectrophotometer, which was another leading spectrophotometer of the time. [15]
The instrument was widely used for studies of chemical bonding, quantitative analysis, and rates of chemical reaction. The use of the instrument generally necessitated that substances being studied are in the solution state. [16] Integrating sphere accessories were available which enabled diffuse reflectance measurements,
The Cary 14 was produced until 1980. Its selling price in 1960 was approximately US $20,000. [1] Cary Instruments replaced production of the Cary 14 with the Cary 17 beginning in 1970. [17] Cary recording spectrophotometers, including the Cary 14, were contemporary to the single beam, non-scanning Spectronic 20 spectrophotometer. These instruments were complementary and were used in academic and analytical settings through the 1950s, 1960s, and 1970s. [18]
Although the Cary 14 is out of production, refurbished versions of it that retain the original optics but with an air cooled deuterium lamp, a lead-sulphide IR detector, modernized, digital electronics and recording, automatic lamp and detector change at selected wavelengths, extensive accessories, and flexible operation automation that includes the ability to integrate the instrument into a larger system are commercially available as of 2017. [19] Versions of modernized Cary 14 spectrophotometers extend the wavelength range to 2500 nanometers in the near infrared spectrum. [20]
An optical spectrometer is an instrument used to measure properties of light over a specific portion of the electromagnetic spectrum, typically used in spectroscopic analysis to identify materials. The variable measured is most often the irradiance of the light but could also, for instance, be the polarization state. The independent variable is usually the wavelength of the light or a unit directly proportional to the photon energy, such as reciprocal centimeters or electron volts, which has a reciprocal relationship to wavelength.
UV spectroscopy or UV–visible spectrophotometry refers to absorption spectroscopy or reflectance spectroscopy in part of the ultraviolet and the full, adjacent visible regions of the electromagnetic spectrum. Being relatively inexpensive and easily implemented, this methodology is widely used in diverse applied and fundamental applications. The only requirement is that the sample absorb in the UV-Vis region, i.e. be a chromophore. Absorption spectroscopy is complementary to fluorescence spectroscopy. Parameters of interest, besides the wavelength of measurement, are absorbance (A) or transmittance (%T) or reflectance (%R), and its change with time.
In laboratories, a cuvette is a small tube-like container with straight sides and a circular or square cross-section. It is sealed at one end, and made of a clear, transparent material such as plastic, glass, or fused quartz. Cuvettes are designed to hold samples for spectroscopic measurement, where a beam of light is passed through the sample within the cuvette to measure the absorbance, transmittance, fluorescence intensity, fluorescence polarization, or fluorescence lifetime of the sample. This measurement is done with a spectrophotometer.
Colorimetry is "the science and technology used to quantify and describe physically the human color perception". It is similar to spectrophotometry, but is distinguished by its interest in reducing spectra to the physical correlates of color perception, most often the CIE 1931 XYZ color space tristimulus values and related quantities.
Spectrophotometry is a branch of electromagnetic spectroscopy concerned with the quantitative measurement of the reflection or transmission properties of a material as a function of wavelength. Spectrophotometry uses photometers, known as spectrophotometers, that can measure the intensity of a light beam at different wavelengths. Although spectrophotometry is most commonly applied to ultraviolet, visible, and infrared radiation, modern spectrophotometers can interrogate wide swaths of the electromagnetic spectrum, including x-ray, ultraviolet, visible, infrared, and/or microwave wavelengths.
Fluorescence spectroscopy is a type of electromagnetic spectroscopy that analyzes fluorescence from a sample. It involves using a beam of light, usually ultraviolet light, that excites the electrons in molecules of certain compounds and causes them to emit light; typically, but not necessarily, visible light. A complementary technique is absorption spectroscopy. In the special case of single molecule fluorescence spectroscopy, intensity fluctuations from the emitted light are measured from either single fluorophores, or pairs of fluorophores.
A monochromator is an optical device that transmits a mechanically selectable narrow band of wavelengths of light or other radiation chosen from a wider range of wavelengths available at the input. The name is from the Greek roots mono-, "single", and chroma, "colour", and the Latin suffix -ator, denoting an agent.
A photometer is an instrument that measures the strength of electromagnetic radiation in the range from ultraviolet to infrared and including the visible spectrum. Most photometers convert light into an electric current using a photoresistor, photodiode, or photomultiplier.
A spectroradiometer is a light measurement tool that is able to measure both the wavelength and amplitude of the light emitted from a light source. Spectrometers discriminate the wavelength based on the position the light hits at the detector array allowing the full spectrum to be obtained with a single acquisition. Most spectrometers have a base measurement of counts which is the un-calibrated reading and is thus impacted by the sensitivity of the detector to each wavelength. By applying a calibration, the spectrometer is then able to provide measurements of spectral irradiance, spectral radiance and/or spectral flux. This data is also then used with built in or PC software and numerous algorithms to provide readings or Irradiance (W/cm2), Illuminance, Radiance (W/sr), Luminance (cd), Flux, Chromaticity, Color Temperature, Peak and Dominant Wavelength. Some more complex spectrometer software packages also allow calculation of PAR μmol/m2/s, Metamerism, and candela calculations based on distance and include features like 2- and 20-degree observer, baseline overlay comparisons, transmission and reflectance.
Henry Cary was an American engineer and the co-founder of the Applied Physics Corporation, along with George W. Downs and William Miller. The Cary 14 UV-Vis-NIR and the Cary Model 81 Raman Spectrophotometer were particularly important contributions in scientific instrumentation and spectroscopy. Before starting Applied Physics, Cary was employed by Beckman Instruments, where he worked on the design of several instruments including the ubiquitous DU spectrophotometer. Howard Cary was a founder and the first president of the Optical Society of Southern California.
The Spectronic 20 is a brand of single-beam spectrophotometer, designed to operate in the visible spectrum across a wavelength range of 340 nm to 950 nm, with a spectral bandpass of 20 nm. It is designed for quantitative absorption measurement at single wavelengths. Because it measures the transmittance or absorption of visible light through a solution, it is sometimes referred to as a colorimeter. The name of the instrument is a trademark of the manufacturer.
Digital holography refers to the acquisition and processing of holograms with a digital sensor array, typically a CCD camera or a similar device. Image rendering, or reconstruction of object data is performed numerically from digitized interferograms. Digital holography offers a means of measuring optical phase data and typically delivers three-dimensional surface or optical thickness images. Several recording and processing schemes have been developed to assess optical wave characteristics such as amplitude, phase, and polarization state, which make digital holography a very powerful method for metrology applications .
A fluorometer, fluorimeter or fluormeter is a device used to measure parameters of visible spectrum fluorescence: its intensity and wavelength distribution of emission spectrum after excitation by a certain spectrum of light. These parameters are used to identify the presence and the amount of specific molecules in a medium. Modern fluorometers are capable of detecting fluorescent molecule concentrations as low as 1 part per trillion.
Fourier-transform infrared spectroscopy (FTIR) is a technique used to obtain an infrared spectrum of absorption or emission of a solid, liquid, or gas. An FTIR spectrometer simultaneously collects high-resolution spectral data over a wide spectral range. This confers a significant advantage over a dispersive spectrometer, which measures intensity over a narrow range of wavelengths at a time.
Stray light is light in an optical system, which was not intended in the design. The light may be from the intended source, but follow paths other than intended, or it may be from a source other than the intended source. This light will often set a working limit on the dynamic range of the system; it limits the signal-to-noise ratio or contrast ratio, by limiting how dark the system can be. Ocular straylight is stray light in the human eye.
OD600 (Also written as O.D. 600, D600, o.d. 600, OD600) is an abbreviation indicating the optical density of a sample measured at a wavelength of 600 nm. It is a commonly used in Spectrophotometry for estimating the concentration of bacteria or other cells in a liquid as the 600nm wavelength does little to damage or hinder their growth. Since optical density in case of OD600 measurements results from light scattering rather than absorption, size and shape as well as dead cells and debris of a cell may add to light dissipating. Distinctive cell types that are at densities of the same level (eg. cell/mL), may, there fore, show varying values OD600, when estimated on a similar instrument.
The DU spectrophotometer or Beckman DU, introduced in 1941, was the first commercially viable scientific instrument for measuring the amount of ultraviolet light absorbed by a substance. This model of spectrophotometer enabled scientists to easily examine and identify a given substance based on its absorption spectrum, the pattern of light absorbed at different wavelengths. Arnold O. Beckman's National Technical Laboratories developed three in-house prototype models and one limited distribution model (D) before moving to full commercial production with the DU. Approximately 30,000 DU spectrophotometers were manufactured and sold between 1941 and 1976.
The collimated transmission method is a direct way of measuring the optical properties of materials. It is especially useful for sensing the optical properties of tissues to guide developments of both diagnostic and therapeutic techniques. These optical properties are described by the absorption coefficient μa, scattering coefficient μs, and anisotropy factor g.
Explorer 55, also called as AE-E, was a NASA scientific satellite belonging to series Atmosphere Explorer, being launched on 20 November 1975 from Cape Canaveral Air Force Station (CCAFS) board a Thor-Delta 2910 launch vehicle.
Ultraviolet-visible (UV-Vis) absorption spectroelectrochemistry (SEC) is a multiresponse technique that analyzes the evolution of the absorption spectra in UV-Vis regions during an electrode process. This technique provides information from an electrochemical and spectroscopic point of view. In this way, it enables a better perception about the chemical system of interest. On one hand, molecular information related to the electronic levels of the molecules is obtained from the evolution of the spectra. On the other hand, kinetic and thermodynamic information of the processes is obtained from the electrochemical signal.
It is particularly note-worthy among commercial instrumentation for the size, freedom from stray light, wavelength calibration reproducibility and wide range of scan speeds of its prism-grating double-monochromator.
Two significant trends... extension of the frequency range... incorporation of the high-quality gratings now available into monochromators... The Cary 14 ... was among the first to incorporate these features.