Castle Combe Clock

Last updated

The Castle Combe clock Faceless Clock at St. Andrew's, Castle Combe (13517993173).jpg
The Castle Combe clock

The Castle Combe clock in St. Andrew's Church, Castle Combe, Wiltshire, England was probably made in the late 15th century. It is faceless and strikes a bell in the church tower. [1]

Contents

History

There are no known documents that show an exact date when the clock was manufactured, but it is of similar construction to the Exeter Cathedral clock, the Marston Magna clock in Somerset and the Cotehele clock in Cornwall. A comparison with those clocks makes it likely that it was constructed in the late 15th century.

Sometime after 1670, the clock was converted from verge escapement and foliot to a pendulum. For the conversion, the clock was turned upside-down and the release mechanism for the hour strike was adapted to the new positioning of the clock.

In 1984, the clock was taken down from the bell tower to the nave of the church, and put on a concrete plinth in a wooden cabinet with glass panes. The moving parts were painted a lurid bright orange, and a minute hand with a 180 degree dial was added. The manual winding spokes were removed and electric winders were installed for both the going and striking train.

Mechanism

The going train sits on top of the clock and the striking train is below. This used to be the other way around, before the clock was converted to have a pendulum.

Frame

The two-post door frame is made from wrought iron. The top and bottom horizontal bars are fixed to the vertical bars by wedged tenon. The frame bars are approximately 1 centimetre (0.39 in) thick and 3 centimetres (1.2 in) wide.

Going train

An anchor escapement was fitted to the clock; the date of this conversion is unknown.

The escapement arbor turns anti-clockwise. The pendulum theoretically swings once every second, and the escapement wheel (brass) has 20 teeth, so the escapement arbor takes 40 seconds per turn.

On the second arbor, the gears consist of an 8-pin birdcage and a 64-teeth wheel, which thus takes 320 seconds per turn. This arbor is probably not original and might date from the conversion to pendulum. This arbor is held by two short brackets that centre approximately 3 centimetres (1.2 in) to the left of the main frame. The brackets are roughly riveted to the main frame.

An 8-pin birdcage engages with 90 teeth on the main wheel, thus taking 3,600 seconds (one hour) per turn.

It is likely that the minute hand and dial were fitted after 1971, as they do not appear in Beeson's photo of the clock. The big wheel of the going train is probably the only geared wheel that is original, as it is of the same construction as the wheels of the striking train.

Striking train

Count wheel and locking mechanism Castle Combe Clock.jpg
Count wheel and locking mechanism

The big wheel of the striking train has 48 teeth, which are of rectangular cut with a rounded-off head.

An arbor below the big wheel has an 8-pin birdcage and a 24-teeth wheel, making a x6 gear ratio. This arbor has on the outside of the clock frame a balanced metal rod fixed to it which is used for the clock and release of the striking train. The top end of this rod is slightly longer and flattened, whereas the bottom end of the rod is shorter and wider to compensate the weight.

Below this second arbor, there is the fly arbor which is connected via an 8-pin birdcage, making a x3 gear ratio. Each turn of the main wheel will turn the fly 18 times. As the main wheel has 8 hour pins, each single hour strike corresponds to 2¼ turns of the fly, which is located at the back of the clock outside the clock frame.

Above the big wheel, the count wheel is mounted on the front of the clock outside the clock frame. The count wheel has 78 teeth on the outside, and the 12 notches are on the inside of the count wheel. The main arbor has an 8-tooth pinion which drives the count wheel. This directly reflects the ratio of strikes to lifting pins on the main wheel, as each turn of the count wheel has to produce 78 strikes (the total of numbers 1 through 12). One turn of the count wheel is equal to 9¾ turns of the big wheel.

The big wheel of the striking train turns anti-clockwise, the second arbor with the lock/release rod turns clockwise, and the fly turns anti-clockwise.

It appears that most of the wheels of the striking train are original. The count wheel might have been replaced at a later stage, as its construction and execution is different from the other wheels. It is possible that an earlier count wheel only rang the bell once every hour, as this was not unusual for clocks with similar design.

Lock and release mechanism for the striking train

As the clock was turned upside-down when converted to pendulum, the locking mechanism had to be redesigned so that gravity could provide the force for locking the striking train again.

A pivot bracket to the top right of the count wheel holds a three-pronged fork-like construction. The left tine of the fork keeps the flail in place. The middle tine of the fork is used to transmit the release from the main arbor of the going train.

At the end of the main arbor of the going train, there are two pegs of metal mounted that turn with the main arbor once per hour. The first one is short (approximately 2 centimetres (0.79 in)), and the second is longer (approximately 10 centimetres (3.9 in)). They are at roughly a 90 degree angle. As the main arbor of the going train turns anti-clockwise, the first, short peg will push the fork up a little, which releases the flail and also moves the lock pin out of the count wheel. The flail turns clockwise until it hits the second, longer peg. This is the warning. A couple of minutes later, as the longer peg moves anti-clockwise, it completely releases the flail, which now turns clockwise whilst the clock strikes. As soon as a notch comes up on the count wheel, the fork dips again, and the left tine of the fork blocks the flail on its next turn.

Bell lever

Slightly below the centre of the main striking arbor, a pivot bracket goes to the left of the mechanism. This holds a lever that is pushed up as the hour pins of the main wheel move upwards. A steel wire connects the lever to a bell in the bell tower.

Related Research Articles

<span class="mw-page-title-main">Pendulum clock</span> Clock regulated by a pendulum

A pendulum clock is a clock that uses a pendulum, a swinging weight, as its timekeeping element. The advantage of a pendulum for timekeeping is that it is an approximate harmonic oscillator: It swings back and forth in a precise time interval dependent on its length, and resists swinging at other rates. From its invention in 1656 by Christiaan Huygens, inspired by Galileo Galilei, until the 1930s, the pendulum clock was the world's most precise timekeeper, accounting for its widespread use. Throughout the 18th and 19th centuries, pendulum clocks in homes, factories, offices, and railroad stations served as primary time standards for scheduling daily life, work shifts, and public transportation. Their greater accuracy allowed for the faster pace of life which was necessary for the Industrial Revolution. The home pendulum clock was replaced by less-expensive synchronous electric clocks in the 1930s and '40s. Pendulum clocks are now kept mostly for their decorative and antique value.

<span class="mw-page-title-main">Grasshopper escapement</span> Low friction clock escapement

The grasshopper escapement is a low-friction escapement for pendulum clocks invented by British clockmaker John Harrison around 1722. An escapement, part of every mechanical clock, is the mechanism that gives the clock's pendulum periodic pushes to keep it swinging, and each swing releases the clock's gears to move forward by a fixed amount, thus moving the hands forward at a steady rate. The grasshopper escapement was used in a few regulator clocks built during Harrison's time, and a few others over the years, but has never seen wide use. The term "grasshopper" in this connection, apparently from the kicking action of the pallets, first appears in the Horological Journal in the late 19th century.

<span class="mw-page-title-main">Escapement</span> Mechanism for regulating the speed of clocks

An escapement is a mechanical linkage in mechanical watches and clocks that gives impulses to the timekeeping element and periodically releases the gear train to move forward, advancing the clock's hands. The impulse action transfers energy to the clock's timekeeping element to replace the energy lost to friction during its cycle and keep the timekeeper oscillating. The escapement is driven by force from a coiled spring or a suspended weight, transmitted through the timepiece's gear train. Each swing of the pendulum or balance wheel releases a tooth of the escapement's escape wheel, allowing the clock's gear train to advance or "escape" by a fixed amount. This regular periodic advancement moves the clock's hands forward at a steady rate. At the same time, the tooth gives the timekeeping element a push, before another tooth catches on the escapement's pallet, returning the escapement to its "locked" state. The sudden stopping of the escapement's tooth is what generates the characteristic "ticking" sound heard in operating mechanical clocks and watches.

<span class="mw-page-title-main">Movement (clockwork)</span> Mechanism of a watch or clock

In horology, a movement, also known as a caliber or calibre, is the mechanism of a watch or timepiece, as opposed to the case, which encloses and protects the movement, and the face, which displays the time. The term originated with mechanical timepieces, whose clockwork movements are made of many moving parts. The movement of a digital watch is more commonly known as a module.

<span class="mw-page-title-main">Anchor escapement</span> Type of mechanism used in pendulum clocks

In horology, the anchor escapement is a type of escapement used in pendulum clocks. The escapement is a mechanism in a mechanical clock that maintains the swing of the pendulum by giving it a small push each swing, and allows the clock's wheels to advance a fixed amount with each swing, moving the clock's hands forward. The anchor escapement was so named because one of its principal parts is shaped vaguely like a ship's anchor.

<span class="mw-page-title-main">Verge escapement</span> Early clock mechanism

The vergeescapement is the earliest known type of mechanical escapement, the mechanism in a mechanical clock that controls its rate by allowing the gear train to advance at regular intervals or 'ticks'. Verge escapements were used from the late 13th century until the mid 19th century in clocks and pocketwatches. The name verge comes from the Latin virga, meaning stick or rod.

<span class="mw-page-title-main">Yi Xing</span> 8th-century Buddhist monk and astronomer

Yi Xing, born Zhang Sui, was a Chinese astronomer, Buddhist monk, inventor, mathematician, mechanical engineer, and philosopher during the Tang dynasty. His astronomical celestial globe featured a liquid-driven escapement, the first in a long tradition of Chinese astronomical clockworks.

<span class="mw-page-title-main">Lever escapement</span>

The lever escapement, invented by the English clockmaker Thomas Mudge in 1754, is a type of escapement that is used in almost all mechanical watches, as well as small mechanical non-pendulum clocks, alarm clocks, and kitchen timers.

<span class="mw-page-title-main">Striking clock</span> Clock that sounds the time with a bell or gong

A striking clock is a clock that sounds the hours audibly on a bell, gong, or other audible device. In 12-hour striking, used most commonly in striking clocks today, the clock strikes once at 1:00 am, twice at 2:00 am, continuing in this way up to twelve times at 12:00 mid-day, then starts again, striking once at 1:00 pm, twice at 2:00 pm, up to twelve times at 12:00 midnight.

<span class="mw-page-title-main">Salisbury Cathedral clock</span> Ancient clock of Salisbury Cathedral

The Salisbury Cathedral clock is a large iron-framed tower clock without a dial, in Salisbury Cathedral, England. Thought to date from about 1386, it is a well-preserved example of the earliest type of mechanical clock, called verge and foliot clocks, and is said to be the oldest working clock in the world, although similar claims are made for other clocks. Previously in a bell-tower which was demolished in 1790, the clock was restored to working condition in 1956 and is on display in the North nave aisle of the cathedral, close to the West front.

<span class="mw-page-title-main">St Mark's Clock</span> Clock tower in Venice, Italy

St Mark's Clock is housed in the Clock Tower on the Piazza San Marco in Venice, Italy, adjoining the Procuratie Vecchie. The first clock housed in the tower was built and installed by Gian Paolo and Gian Carlo Rainieri, father and son, between 1496 and 1499, and was one of a number of large public astronomical clocks erected throughout Europe during the 14th and 15th centuries. The clock has had an eventful horological history, and been the subject of many restorations, some controversial.

<span class="mw-page-title-main">Riefler escapement</span> Mechanical escapement for pendulum clocks

The Riefler escapement is a mechanical escapement for precision pendulum clocks invented and patented by German instrument maker Sigmund Riefler in 1889. It was used in the astronomical regulator clocks made by his German firm Clemens Riefler from 1890 to 1965, which were perhaps the most accurate all-mechanical pendulum clocks made.

<span class="mw-page-title-main">Turret clock</span> Large prominently located clock used as a public amenity

A turret clock or tower clock is a clock designed to be mounted high in the wall of a building, usually in a clock tower, in public buildings such as churches, university buildings, and town halls. As a public amenity to enable the community to tell the time, it has a large face visible from far away, and often a striking mechanism which rings bells upon the hours.

<span class="mw-page-title-main">Mechanical watch</span> Type of watch which uses a clockwork mechanism to measure the passage of time

A mechanical watch is a watch that uses a clockwork mechanism to measure the passage of time, as opposed to quartz watches which function using the vibration modes of a piezoelectric quartz tuning fork, or radio watches, which are quartz watches synchronized to an atomic clock via radio waves. A mechanical watch is driven by a mainspring which must be wound either periodically by hand or via a self-winding mechanism. Its force is transmitted through a series of gears to power the balance wheel, a weighted wheel which oscillates back and forth at a constant rate. A device called an escapement releases the watch's wheels to move forward a small amount with each swing of the balance wheel, moving the watch's hands forward at a constant rate. The escapement is what makes the 'ticking' sound which is heard in an operating mechanical watch. Mechanical watches evolved in Europe in the 17th century from spring powered clocks, which appeared in the 15th century.

Edward Martin Burgess FSA FBHI, known as Martin Burgess, was an English horologist and master clockmaker.

<span class="mw-page-title-main">History of timekeeping devices</span>

The history of timekeeping devices dates back to when ancient civilizations first observed astronomical bodies as they moved across the sky. Devices and methods for keeping time have gradually improved through a series of new inventions, starting with measuring time by continuous processes, such as the flow of liquid in water clocks, to mechanical clocks, and eventually repetitive, oscillatory processes, such as the swing of pendulums. Oscillating timekeepers are used in modern timepieces.

In horology, a wheel train is the gear train of a mechanical watch or clock. Although the term is used for other types of gear trains, the long history of mechanical timepieces has created a traditional terminology for their gear trains which is not used in other applications of gears.

<span class="mw-page-title-main">Cotehele clock</span> Turret clock in Cornwall, England

The Cotehele clock is situated at Cotehele House, Calstock, Cornwall. It is the earliest turret clock in the United Kingdom still working in an unaltered state and in its original position. It was probably installed between 1493 and 1521.

The échappement naturel was the invention of Abraham-Louis Breguet, one of the most eminent watchmakers of all time. Following the introduction of the detent chronometer escapement with a temperature compensated balance, very close rates could be achieved in marine chronometers and to a lesser degree in pocket chronometers. This achievement was due, other things being equal, to the minimal interference with the balance during unlocking and impulse. A further key advantage of this escapement was that there was no need for oil on the escapement's working surfaces and hence no deterioration in the friction between the working surfaces as the oil aged. A drawback was that the detent escapement as it was used in pocket chronometers was prone to stopping as a result of motion. Most escapements are capable of being stopped by a sudden movement but the detent escapement gives an impulse to the balance only when it is moving in one direction. The escapement is therefore not self-starting. The lever escapement, as used in most modern mechanical watches, avoided this problem. In common with most other escapements it gave an impulse to the balance in both directions of the balance swing. This creates another problem in doing so because the introduction of a lever between the balance and the final (escape) wheel of the escapement requires lubrication on the acting surfaces.

David Robertson was the first Professor of Electrical Engineering at Bristol University. Robertson had wide interests and one of these was horology – he wanted to provide the foundation of what we could call “horological engineering”, that is, a firm science-based approach to the design of accurate mechanical clocks. He contributed a long series on the scientific foundations of precision clocks to the Horological Journal which was the main publication for the trade in the UK; he and his students undertook research on clocks and pendulums ; and he designed at least one notable clock, to keep University time and control the chiming of Great George in the Wills Memorial Building from its inauguration on 1925, for which he also designed the chiming mechanism.

References

  1. Beeson, C. F. C. (1971). English Church Clocks, 1280–1850: Their History and Classification. Brant Wright Associates. ISBN   0-903512-14-9. OCLC   4868469.

51°29′36″N2°13′47″W / 51.4934°N 2.2298°W / 51.4934; -2.2298