Cauchy's theorem is a theorem in geometry, named after Augustin Cauchy. It states that convex polytopes in three dimensions with congruent corresponding faces must be congruent to each other. That is, any polyhedral net formed by unfolding the faces of the polyhedron onto a flat surface, together with gluing instructions describing which faces should be connected to each other, uniquely determines the shape of the original polyhedron. For instance, if six squares are connected in the pattern of a cube, then they must form a cube: there is no convex polyhedron with six square faces connected in the same way that does not have the same shape.
This is a fundamental result in rigidity theory: one consequence of the theorem is that, if one makes a physical model of a convex polyhedron by connecting together rigid plates for each of the polyhedron faces with flexible hinges along the polyhedron edges, then this ensemble of plates and hinges will necessarily form a rigid structure.
Let P and Q be combinatorially equivalent 3-dimensional convex polytopes; that is, they are convex polytopes with isomorphic face lattices. Suppose further that each pair of corresponding faces from P and Q are congruent to each other, i.e. equal up to a rigid motion. Then P and Q are themselves congruent.
To see that convexity is necessary, consider a regular icosahedron. One can "push in" a vertex to create a nonconvex polyhedron that is still combinatorially equivalent to the regular icosahedron; that is, one can take five faces of the icosahedron meeting at a vertex, which form the sides of a pentagonal pyramid, and reflect the pyramid with respect to its base.
The result originated in Euclid's Elements , where solids are called equal if the same holds for their faces. This version of the result was proved by Cauchy in 1813 based on earlier work by Lagrange. An error in Cauchy's proof of the main lemma was corrected by Ernst Steinitz, Isaac Jacob Schoenberg, and Aleksandr Danilovich Aleksandrov. The corrected proof of Cauchy is so short and elegant, that it is considered to be one of the Proofs from THE BOOK. [1]
In geometry, a Kepler–Poinsot polyhedron is any of four regular star polyhedra.
In geometry, a polyhedron is a three-dimensional shape with flat polygonal faces, straight edges and sharp corners or vertices.
In geometry, a 4-polytope is a four-dimensional polytope. It is a connected and closed figure, composed of lower-dimensional polytopal elements: vertices, edges, faces (polygons), and cells (polyhedra). Each face is shared by exactly two cells. The 4-polytopes were discovered by the Swiss mathematician Ludwig Schläfli before 1853.
In geometry, the Dehn invariant is a value used to determine whether one polyhedron can be cut into pieces and reassembled ("dissected") into another, and whether a polyhedron or its dissections can tile space. It is named after Max Dehn, who used it to solve Hilbert's third problem by proving that not all polyhedra with equal volume could be dissected into each other.
Aleksandr Danilovich Aleksandrov was a Soviet/Russian mathematician, physicist, philosopher and mountaineer.
In mathematics, a rigid collection C of mathematical objects is one in which every c ∈ C is uniquely determined by less information about c than one would expect. The above statement does not define a mathematical property; instead, it describes in what sense the adjective "rigid" is typically used in mathematics, by mathematicians.
Aleksei Vasilyevich Pogorelov, was a Soviet mathematician. Specialist in the field of convex and differential geometry, geometric PDEs and elastic shells theory, the author of the novel school textbook on geometry and university textbooks on analytical geometry, on differential geometry, and on foundations of geometry.
A dihedron is a type of polyhedron, made of two polygon faces which share the same set of n edges. In three-dimensional Euclidean space, it is degenerate if its faces are flat, while in three-dimensional spherical space, a dihedron with flat faces can be thought of as a lens, an example of which is the fundamental domain of a lens space L(p,q). Dihedra have also been called bihedra, flat polyhedra, or doubly covered polygons.
In geometry, a flexible polyhedron is a polyhedral surface without any boundary edges, whose shape can be continuously changed while keeping the shapes of all of its faces unchanged. The Cauchy rigidity theorem shows that in dimension 3 such a polyhedron cannot be convex.
In geometry, a Bricard octahedron is a member of a family of flexible polyhedra constructed by Raoul Bricard in 1897. The overall shape of one of these polyhedron may change in a continuous motion, without any changes to the lengths of its edges nor to the shapes of its faces. These octahedra were the first flexible polyhedra to be discovered.
In polyhedral combinatorics, a branch of mathematics, Steinitz's theorem is a characterization of the undirected graphs formed by the edges and vertices of three-dimensional convex polyhedra: they are exactly the 3-vertex-connected planar graphs. That is, every convex polyhedron forms a 3-connected planar graph, and every 3-connected planar graph can be represented as the graph of a convex polyhedron. For this reason, the 3-connected planar graphs are also known as polyhedral graphs.
In geometry, a Schönhardt polyhedron is a polyhedron with the same combinatorial structure as a regular octahedron, but with dihedral angles that are non-convex along three disjoint edges. Because it has no interior diagonals, it cannot be triangulated into tetrahedra without adding new vertices. It has the fewest vertices of any polyhedron that cannot be triangulated. It is named after German mathematician Erich Schönhardt, who described it in 1928, although artist Karlis Johansons exhibited a related structure in 1921.
Jessen's icosahedron, sometimes called Jessen's orthogonal icosahedron, is a non-convex polyhedron with the same numbers of vertices, edges, and faces as the regular icosahedron. It is named for Børge Jessen, who studied it in 1967. In 1971, a family of nonconvex polyhedra including this shape was independently discovered and studied by Adrien Douady under the name six-beakedshaddock; later authors have applied variants of this name more specifically to Jessen's icosahedron.
In discrete geometry and mechanics, structural rigidity is a combinatorial theory for predicting the flexibility of ensembles formed by rigid bodies connected by flexible linkages or hinges.
The Alexandrov uniqueness theorem is a rigidity theorem in mathematics, describing three-dimensional convex polyhedra in terms of the distances between points on their surfaces. It implies that convex polyhedra with distinct shapes from each other also have distinct metric spaces of surface distances, and it characterizes the metric spaces that come from the surface distances on polyhedra. It is named after Soviet mathematician Aleksandr Danilovich Aleksandrov, who published it in the 1940s.
In geometry, Steffen's polyhedron is a flexible polyhedron discovered by and named after Klaus Steffen. It is based on the Bricard octahedron, but unlike the Bricard octahedron its surface does not cross itself. With nine vertices, 21 edges, and 14 triangular faces, it is the simplest possible non-crossing flexible polyhedron. Its faces can be decomposed into three subsets: two six-triangle-patches from a Bricard octahedron, and two more triangles that link these patches together.
Convex Polyhedra is a book on the mathematics of convex polyhedra, written by Soviet mathematician Aleksandr Danilovich Aleksandrov, and originally published in Russian in 1950, under the title Выпуклые многогранники. It was translated into German by Wilhelm Süss as Konvexe Polyeder in 1958. An updated edition, translated into English by Nurlan S. Dairbekov, Semën Samsonovich Kutateladze and Alexei B. Sossinsky, with added material by Victor Zalgaller, L. A. Shor, and Yu. A. Volkov, was published as Convex Polyhedra by Springer-Verlag in 2005.
In the geometry of convex polytopes, the Minkowski problem for polytopes concerns the specification of the shape of a polytope by the directions and measures of its facets. The theorem that every polytope is uniquely determined up to translation by this information was proven by Hermann Minkowski; it has been called "Minkowski's theorem", although the same name has also been given to several unrelated results of Minkowski. The Minkowski problem for polytopes should also be distinguished from the Minkowski problem, on specifying convex shapes by their curvature.
In discrete geometry, geometric rigidity is a theory for determining if a geometric constraint system (GCS) has finitely many -dimensional solutions, or frameworks, in some metric space. A framework of a GCS is rigid in -dimensions, for a given if it is an isolated solution of the GCS, factoring out the set of trivial motions, or isometric group, of the metric space, e.g. translations and rotations in Euclidean space. In other words, a rigid framework of a GCS has no nearby framework of the GCS that is reachable via a non-trivial continuous motion of that preserves the constraints of the GCS. Structural rigidity is another theory of rigidity that concerns generic frameworks, i.e., frameworks whose rigidity properties are representative of all frameworks with the same constraint graph. Results in geometric rigidity apply to all frameworks; in particular, to non-generic frameworks.
The skeleton of a cuboctahedron, considering its edges as rigid beams connected at flexible joints at its vertices but omitting its faces, does not have structural rigidity and consequently its vertices can be repositioned by folding at edges and face diagonals. The cuboctahedron's kinematics is noteworthy in that its vertices can be repositioned to the vertex positions of the regular icosahedron, the Jessen's icosahedron, and the regular octahedron, in accordance with the pyritohedral symmetry of the icosahedron.