Cdc14

Last updated

Cdc14 and Cdc14 are a gene and its protein product respectively. [1] Cdc14 is found in most of the eukaryotes. Cdc14 was defined by Hartwell in his famous screen for loci that control the cell cycle of Saccharomyces cerevisiae. [1] Cdc14 was later shown to encode a protein phosphatase. Cdc14 is dual-specificity, which means it has serine/threonine and tyrosine-directed activity. A preference for serines next to proline is reported. [2] Many early studies, especially in the budding yeast Saccharomyces cerevisiae, demonstrated that the protein plays a key role in regulating late mitotic processes. [3] However, more recent work in a range of systems suggests that its cellular function is more complex.

Contents

Cellular function

In Saccharomyces cerevisiae, the species in which Cdc14 activity is best understood and most-studied, the activity of Cdc14 (ScCdc14) leads to mitotic exit by dephosphorylating targets of Cdk1, a well-studied cyclin-dependent protein kinase. [4] Cdc14 antagonizes Cdk1 by stimulating proteolysis of its cyclin partner (cyclin B), through the dephosphorylation of Cdh1, a regulator of the anaphase-promoting complex. Cdc14 also dephosphorylates Swi5 to enhance transcription of Sic1, an inhibitor of Cdk1. [3]

This "simple" mitotic exit model became complicated as additional roles in mitosis were attributed to ScCdc14. [3] [5] These included stabilizing the spindle and regulating cytokinesis and rDNA/ telomere segregation. Consistent with such multiple roles, ScCdc14 has been found to bind several proteins that regulate the cell cycle and DNA replication, or that associate with the spindle or kinetochore. [6] [7] [8]

Work in other yeasts further complicated the understanding of the role of Cdc14. Mutants in the ortholog of the fission Schizosaccharomyces pombe exit mitosis normally (unlike S. cerevisiae) but are altered in septation and cytokinesis. [9] Also, while the protein regulates the Cdk1 ortholog of S. pombe, this occurs through a process unlike that of S. cerevisiae; it does not dephosphorylate the Sic1 or Cdh1 orthologs, but promotes the inactivation of Cdc2 by down-regulating Cdc25 phosphatase. [10] Cdc14 of Candida albicans is also involved in septation and cytokinesis, but not mitotic exit. [9]

Studies of Cdc14 in animal systems has further muddled the Cdc14 story. Animals have up to three diverged Cdc14 genes, with multiple splice variants, that appear to diverge in function and location. Also, several crucial studies have yielded contradictory results. The nematode Caenorhabditis elegans makes one Cdc14 (CeCdc14), which localizes to the spindle and centrosomes in mitosis, and to the cytoplasm at interphase. One RNAi study with CeCdc14 caused cytokinesis defects, which was consistent with similar work in Xenopus laevis. [11] [12] However, a second RNAi study showed no defects, and it was suggested that the first experiment used too many oligonucleotides which caused off-target effects. [13] [14] Contradictory data also exist with human Cdc14. Unlike CeCdc14, hCdc14A is not centrosomic in mitosis, but is cytoplasmic and centrosomic during interphase. [15] HCdc14B was shown in one study to be primarily nucleolar like ScCdc14 (but unlike CeCdc14), but others detected hCdc14B on nuclear filaments and the spindle [16] [17] [18]

While RNAi depletion of hCdc14A and hCdc14B led to defects in centriole duplication, cell cycle progression, and mitotic exit, cells deleted for the genes showed no defects in growth or mitosis, and a similar failure of a cell cycle defect was also shown in cultured human cells using conditional hCdc14A and hCdc14B knockouts. [15] [19] Finally, in chicken, knockout lines totally lacked defects in cell-cycle progression, mitotic entry or exit, cytokinesis, or centrosome behavior. [15] [19] There is evidence that Cdc14 may participate in a DNA damage checkpoint. [20]

A novel role for Cdc14 in eukaryotes was suggested by studies of Phytophthora infestans, a eukaryotic microbe known best as the cause of the Great Famine of Ireland. Notably, while the species mentioned above are all relatively close taxonomic relatives (in the Fungi/Metazoa group), P. infestans has a distinct evolutionary history; it is classified as an oomycete, and is a member of the Kingdom Stramenopila (the Heterokonts in some schemes) along with diatoms and brown algae. The single Cdc14 gene of P. infestans (PiCdc14) is expressed distinctly from those of fungi and metazoans; instead of being transcribed throughout the cell cycle and regulated post-translationally, PiCdc14 is under strong transcriptional control and is not expressed in hyphae, where most mitosis takes place. Instead, PiCdc14 is made during the formation of asexual spores, including its biflagellated zoospores. [21] PiCdc14 was found to accumulate near the basal bodies, at the base of the flagella. [22] In light of the varying roles of Cdc14 in fungi and animals, it was suggested that the P. infestans data implied that an ancestral role of Cdc14 involved the flagella stage of eukaryotes. [22] Additional data in support of this theory was later obtained from studies in zebrafish, where its Cdc14 proteins were also found to localize to the basal body and play roles in the formation of cilia, which are short forms of flagella. [23]

Cdc14 is also involved in regulation of key steps during meiosis in budding yeast. Cdc55, a regulatory subunit of Protein phosphatase 2 (PP2A), sequesters Cdc14 in the nucleolus during early stage of meiosis. The sequestration of Cdc14 is necessary for assembling the meiosis I spindle. Although, the early stage sequestration of Cdc14 is not essential for separation of chromosomes. [24] FEAR (Cdc Fourteen Early Anaphase Release) complex proteins, SLK19 and SPO12 regulate the release of Cdc14. [25] The release of Cdc14 from nucleolus results in cdk1 inactivation and ultimately in disassembly of spindle during Anaphase of meiosis I. Cells deprived of Cdc14 or SLK19 and SPO12 have abnormal meiosis. They have only one division during meiosis. The chromosomes also segregate abnormally. The abnormality arises due to delay in dissembling of spindle during Anaphase I. However, the segregation of chromosomes continue and both the phases of meiotic segregations take place on prolonged meiosis I spindle. Cdc14 along with SPO12 and SLK19 play a critical role in ensuring that the two phases of chromosomal segregation take place consecutively during meiosis. [26]

Distribution of Cdc14 through evolution

Cdc14 is widely distributed, being found in most eukaryote kingdoms. However, it is not found in all species based on searches of sequenced genomes. One or more Cdc14 genes are found in alveolates, animals, fungi, trypanosomes, and lower plants. [22] However, Cdc14 genes have apparently been lost in some lineages, including higher plants, rhodophytes, and slime molds. There is a fairly tight positive correlation between the presence of Cdc14 in a species and whether that species makes flagella or cilia. [22] This may be related to the ancestral role of Cdc14. Whether flagella-anchoring basal bodies or centrioles involved in mitosis appeared first during evolution has been debated, but one theory is that flagella evolved first as a motility and sensory organelle, and the basal body was later co-opted into a mitotic role. [27] [28] The function of Cdc14 may have adapted to different functions during the evolution of those organelles.

Targets

Most information about the biochemical function of Cdc14 comes from studies of S. cerevisiae. In that species, one important target is Cdh1/Hct1. Cdh1 associates with the APC and leads to APC activity (anaphase promoting complex); [29] activated APC is a key driver in mitotic exit. Furthermore, Cdc14 dephosphorylates the stoichiometric inhibitor of the mitotic cyclins, Sic1, stabilizing Sic1 protein. Cdc14 activity also leads to the stabilization of the transcription factor Swi5, leading to an upregulation of Sic1 transcription. It is possible that Cdc14 acts as a phosphatase on all Clb-Cdk1 targets, acting to reverse the effects of the mitotic cyclins.

The targets of Cdc14 are apparently quite diverse. Yeast two-hybrid and affinity capture methods have identified many proteins that potentially interact with ScCdc14, including those known to regulate the cell cycle and DNA replication, or that associate with the spindle or kinetochore. [6] [7] [8] Cdc14 also appears to inhibit RNA polymerase I, which helps allow complete chromosome disjunction by eliminating ribosomal RNA (rRNA) transcripts that otherwise would block condensin binding to rDNA. [30]

Regulation

In S. cerevisiae, Cdc14 is regulated by its competitive inhibitor Cfi/Net1, which localizes Cdc14 to the nucleolus. [31] During anaphase, Cdc14 is "uncaged" and spreads to the rest of the cell. Two networks mediate the release of Cdc14 from the nucleolus: FEAR (CDC Fourteen Early Anaphase Release) and MEN (Mitotic Exit Network); while these networks are complex, it is thought that these networks result in the phosphorylation of Cfi/Net1 and/or Cdc14, resulting in disassociation of the complex. In S. pombe, phosphorylation of the Cdc14 ortholog by Cdk1 is known to directly inhibit the catalytic activity of the phosphatase. [32]

Related Research Articles

<span class="mw-page-title-main">Cell cycle</span> Series of events and stages that result in cell division

The cell cycle, or cell-division cycle, is the series of events that take place in a cell that causes it to divide into two daughter cells. These events include the duplication of its DNA and some of its organelles, and subsequently the partitioning of its cytoplasm, chromosomes and other components into two daughter cells in a process called cell division.

<span class="mw-page-title-main">Mitosis</span> Process in which replicated chromosomes are separated into two new identical nuclei

In cell biology, mitosis is a part of the cell cycle in which replicated chromosomes are separated into two new nuclei. Cell division by mitosis gives rise to genetically identical cells in which the total number of chromosomes is maintained. Therefore, mitosis is also known as equational division. In general, mitosis is preceded by S phase of interphase and is often followed by telophase and cytokinesis; which divides the cytoplasm, organelles and cell membrane of one cell into two new cells containing roughly equal shares of these cellular components. The different stages of mitosis altogether define the mitotic (M) phase of a cell cycle—the division of the mother cell into two daughter cells genetically identical to each other.

<span class="mw-page-title-main">Cell division</span> Process by which living cells divide

Cell division is the process by which a parent cell divides into two daughter cells. Cell division usually occurs as part of a larger cell cycle in which the cell grows and replicates its chromosome(s) before dividing. In eukaryotes, there are two distinct types of cell division: a vegetative division (mitosis), producing daughter cells genetically identical to the parent cell, and a cell division that produces haploid gametes for sexual reproduction (meiosis), reducing the number of chromosomes from two of each type in the diploid parent cell to one of each type in the daughter cells. In cell biology, mitosis (/maɪˈtoʊsɪs/) is a part of the cell cycle, in which, replicated chromosomes are separated into two new nuclei. Cell division gives rise to genetically identical cells in which the total number of chromosomes is maintained. In general, mitosis is preceded by the S stage of interphase and is often followed by telophase and cytokinesis; which divides the cytoplasm, organelles, and cell membrane of one cell into two new cells containing roughly equal shares of these cellular components. The different stages of mitosis all together define the mitotic (M) phase of animal cell cycle—the division of the mother cell into two genetically identical daughter cells. Meiosis results in four haploid daughter cells by undergoing one round of DNA replication followed by two divisions. Homologous chromosomes are separated in the first division, and sister chromatids are separated in the second division. Both of these cell division cycles are used in the process of sexual reproduction at some point in their life cycle. Both are believed to be present in the last eukaryotic common ancestor.

<span class="mw-page-title-main">Cytokinesis</span> Part of the cell division process

Cytokinesis is the part of the cell division process during which the cytoplasm of a single eukaryotic cell divides into two daughter cells. Cytoplasmic division begins during or after the late stages of nuclear division in mitosis and meiosis. During cytokinesis the spindle apparatus partitions and transports duplicated chromatids into the cytoplasm of the separating daughter cells. It thereby ensures that chromosome number and complement are maintained from one generation to the next and that, except in special cases, the daughter cells will be functional copies of the parent cell. After the completion of the telophase and cytokinesis, each daughter cell enters the interphase of the cell cycle.

<span class="mw-page-title-main">Telophase</span> Final stage of a cell division for eukaryotic cells both in mitosis and meiosis

Telophase is the final stage in both meiosis and mitosis in a eukaryotic cell. During telophase, the effects of prophase and prometaphase are reversed. As chromosomes reach the cell poles, a nuclear envelope is re-assembled around each set of chromatids, the nucleoli reappear, and chromosomes begin to decondense back into the expanded chromatin that is present during interphase. The mitotic spindle is disassembled and remaining spindle microtubules are depolymerized. Telophase accounts for approximately 2% of the cell cycle's duration.

<span class="mw-page-title-main">Anaphase-promoting complex</span> Cell-cycle regulatory complex

Anaphase-promoting complex is an E3 ubiquitin ligase that marks target cell cycle proteins for degradation by the 26S proteasome. The APC/C is a large complex of 11–13 subunit proteins, including a cullin (Apc2) and RING (Apc11) subunit much like SCF. Other parts of the APC/C have unknown functions but are highly conserved.

Maturation-promoting factor (abbreviated MPF, also called mitosis-promoting factor or M-Phase-promoting factor) is the cyclin-Cdk complex that was discovered first in frog eggs. It stimulates the mitotic and meiotic phases of the cell cycle. MPF promotes the entrance into mitosis (the M phase) from the G2 phase by phosphorylating multiple proteins needed during mitosis. MPF is activated at the end of G2 by a phosphatase, which removes an inhibitory phosphate group added earlier.

G<sub>2</sub> phase Second growth phase in the eukaryotic cell cycle, prior to mitosis

G2 phase, Gap 2 phase, or Growth 2 phase, is the third subphase of interphase in the cell cycle directly preceding mitosis. It follows the successful completion of S phase, during which the cell’s DNA is replicated. G2 phase ends with the onset of prophase, the first phase of mitosis in which the cell’s chromatin condenses into chromosomes.

<span class="mw-page-title-main">Separase</span>

Separase, also known as separin, is a cysteine protease responsible for triggering anaphase by hydrolysing cohesin, which is the protein responsible for binding sister chromatids during the early stage of anaphase. In humans, separin is encoded by the ESPL1 gene.

<span class="mw-page-title-main">Aurora kinase B</span> Protein

Aurora kinase B is a protein that functions in the attachment of the mitotic spindle to the centromere.

<span class="mw-page-title-main">Cyclin-dependent kinase 1</span> Mammalian protein found in Homo sapiens

Cyclin-dependent kinase 1 also known as CDK1 or cell division cycle protein 2 homolog is a highly conserved protein that functions as a serine/threonine protein kinase, and is a key player in cell cycle regulation. It has been highly studied in the budding yeast S. cerevisiae, and the fission yeast S. pombe, where it is encoded by genes cdc28 and cdc2, respectively. With its cyclin partners, Cdk1 forms complexes that phosphorylate a variety of target substrates ; phosphorylation of these proteins leads to cell cycle progression.

Polo-like kinases (Plks) are regulatory serine/threonin kinases of the cell cycle involved in mitotic entry, mitotic exit, spindle formation, cytokinesis, and meiosis. Only one Plk is found in the genomes of the fly Drosophila melanogaster (Polo), budding yeast (Cdc5) and fission yeast (Plo1). Vertebrates and other animals, however, have many Plk family members including Plk1, Plk2/Snk, Plk3/Prk/FnK, Plk4/Sak and Plk5. Of the vertebrate Plk family members, the mammalian Plk1 has been most extensively studied. During mitosis and cytokinesis, Plks associate with several structures including the centrosome, kinetochores, and the central spindle.

<span class="mw-page-title-main">CDC20</span> Protein-coding gene in the species Homo sapiens

The cell division cycle protein 20 homolog is an essential regulator of cell division that is encoded by the CDC20 gene in humans. To the best of current knowledge its most important function is to activate the anaphase promoting complex (APC/C), a large 11-13 subunit complex that initiates chromatid separation and entrance into anaphase. The APC/CCdc20 protein complex has two main downstream targets. Firstly, it targets securin for destruction, enabling the eventual destruction of cohesin and thus sister chromatid separation. It also targets S and M-phase (S/M) cyclins for destruction, which inactivates S/M cyclin-dependent kinases (Cdks) and allows the cell to exit from mitosis. A closely related protein, Cdc20homologue-1 (Cdh1) plays a complementary role in the cell cycle.

<span class="mw-page-title-main">MASTL</span> Protein-coding gene in the species Homo sapiens

MASTL is an official symbol provided by HGNC for human gene whose official name is micro tubule associated serine/threonine kinase like. This gene is 32,1 kbps long. This gene is also known as GW, GWL, THC2, MAST-L, GREATWALL. This is present in mainly mammalian cells like human, house mouse, cattle, monkey, etc. It is in the 10th chromosome of the mammalian nucleus. Recent studies have been carried on zebrafish and frogs. This gene encodes for the protein micro tubule associated serine/threonine kinase and its sub-classes.

<span class="mw-page-title-main">Wee1</span> Nuclear protein

Wee1 is a nuclear kinase belonging to the Ser/Thr family of protein kinases in the fission yeast Schizosaccharomyces pombe. Wee1 has a molecular mass of 96 kDa and is a key regulator of cell cycle progression. It influences cell size by inhibiting the entry into mitosis, through inhibiting Cdk1. Wee1 has homologues in many other organisms, including mammals.

<span class="mw-page-title-main">Angelika Amon</span> Austrian American academic molecular and cell biologist (1967–2020)

Angelika Amon was an Austrian American molecular and cell biologist, and the Kathleen and Curtis Marble Professor in Cancer Research at the Massachusetts Institute of Technology (MIT) in Cambridge, Massachusetts, United States. Amon's research centered on how chromosomes are regulated, duplicated, and partitioned in the cell cycle. Amon was elected to the American Academy of Arts and Sciences in 2017.

A series of biochemical switches control transitions between and within the various phases of the cell cycle. The cell cycle is a series of complex, ordered, sequential events that control how a single cell divides into two cells, and involves several different phases. The phases include the G1 and G2 phases, DNA replication or S phase, and the actual process of cell division, mitosis or M phase. During the M phase, the chromosomes separate and cytokinesis occurs.

<span class="mw-page-title-main">APC/C activator protein CDH1</span> Fungal protein found in Saccharomyces cerevisiae S288c

Cdh1 is one of the substrate adaptor protein of the anaphase-promoting complex (APC) in the budding yeast Saccharomyces cerevisiae. Functioning as an activator of the APC/C, Cdh1 regulates the activity and substrate specificity of this ubiquitin E3-ligase. The human homolog is encoded by the FZR1 gene, which is not to be confused with the CDH1 gene.

Clb5 and Clb6 are B-type, S-phase cyclins in yeast that assist in cell cycle regulation. Clb5 and Clb6 bind and activate Cdk1, and high levels of these cyclins are required for entering S-phase. S-phase cyclin binding to Cdk1 directly stimulates DNA replication as well as progression to the next phase of the cell cycle.

Mitotic exit is an important transition point that signifies the end of mitosis and the onset of new G1 phase for a cell, and the cell needs to rely on specific control mechanisms to ensure that once it exits mitosis, it never returns to mitosis until it has gone through G1, S, and G2 phases and passed all the necessary checkpoints. Many factors including cyclins, cyclin-dependent kinases (CDKs), ubiquitin ligases, inhibitors of cyclin-dependent kinases, and reversible phosphorylations regulate mitotic exit to ensure that cell cycle events occur in correct order with fewest errors. The end of mitosis is characterized by spindle breakdown, shortened kinetochore microtubules, and pronounced outgrowth of astral (non-kinetochore) microtubules. For a normal eukaryotic cell, mitotic exit is irreversible.

References

  1. 1 2 Hartwell, LH; Culotti, J; Pringle, JR; Reid, BJ (1974). "Genetic control of the cell division cycle in yeast". Science. 183 (4120): 46–51. Bibcode:1974Sci...183...46H. doi:10.1126/science.183.4120.46. PMID   4587263.
  2. Gray, CH; Good, VM; Tonks, NK; Barford, D (2003). "The structure of the cell cycle protein Cdc14 reveals a proline-directed protein phosphatase". EMBO J. 22 (14): 3524–3535. doi:10.1093/emboj/cdg348. PMC   165618 . PMID   12853468.
  3. 1 2 3 Stegmeier F, Amon A (2004). "Closing mitosis: the functions of the Cdc14 phosphatase and its regulation". Annu. Rev. Genet. 38: 203–32. doi:10.1146/annurev.genet.38.072902.093051. PMID   15568976.
  4. McCollum, D; Gould, KL (2001). "Timing is everything: Regulation of mitotic exit and cytokinesis by the MEN and SIN". Trends Cell Biol. 11 (2): 89–95. doi:10.1016/s0962-8924(00)01901-2. PMID   11166217.
  5. Higuchi, T; Uhlmann, F (2005). "Stabilization of microtubule dynamics at anaphase onset promotes chromosome segregation". Nature. 433 (7022): 171–176. Bibcode:2005Natur.433..171H. doi:10.1038/nature03240. PMC   2586334 . PMID   15650742.
  6. 1 2 Breitkreutz, A; Choi, H; Sharom, JR; Boucher, L; Neduva, V; Larsen, B; Lin, ZY; Breitkreutz, BJ; Stark, C; Liu, G; Ahn, J; Dewar-Darch, D; Reguly, T; Tang, X; Almeida, R; Qin, ZS; Pawson, T; Gingras, AC; Nesvizhskii, AI; Tyers, M (2010). "A global protein kinase and phosphatase interaction network in yeast". Science. 328 (5981): 1043–1046. Bibcode:2010Sci...328.1043B. doi:10.1126/science.1176495. PMC   3983991 . PMID   20489023.
  7. 1 2 Ho, Y; Gruhler, A; Heilbut, A; Bader, GD; Moore, L; Adams, S-L; Millar, A; Taylor, P; Bennett, K; Boutilier, K; Yang, L; Wolting, C; Donaldson, I; Schandorff, S; Shewnarane, J; Vo, M; Taggart, J; Goudreault, M; Muskat, B; Alfarano, C; Dewar, D; Lin, Z; Michalickova, K; Willems, AR; Sassi, H; Nielsen, PA; Rasmussen, KJ; Andersen, JR; Johansen, LE; Hansen, LH; Jespersen, H; Podtelejnikov, A; Nielsen, E; Crawford, J; Poulsen, V; Sorensen, BD; Matthiesen, J; Hendrickson, RC; Gleeson, F; Pawson, T; Moran, MF; Durocher, D; Mann, M; Hogue, CWV; Figeys, D; Tyers, M (2002). "Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry". Nature. 415 (6868): 180–183. Bibcode:2002Natur.415..180H. doi:10.1038/415180a. PMID   11805837. S2CID   4350057.
  8. 1 2 Visintin, R; Hwang, ES; Amon, A (1999). "Cfi1 prevents premature exit from mitosis by anchoring Cdc14 phosphatase in the nucleolus". Nature. 398 (6730): 818–823. Bibcode:1999Natur.398..818V. doi:10.1038/19775. PMID   10235265. S2CID   4344363.
  9. 1 2 Cueille, N; Salimova, E; Esteban, V; Blanco, M; Moreno, S; Bueno, A; Simanis, V (2001). "Flp1, a fission yeast orthologue of the S. cerevisiae CDC14 gene, is not required for cyclin degradation or rum1p stabilisation at the end of mitosis". Journal of Cell Science. 114 (14): 2649–2664. doi:10.1242/jcs.114.14.2649. PMID   11683392.
  10. Wolfe, BA; Gould, KL (2004). "Fission yeast Clp1p phosphatase affects G2/M transition and mitotic exit through Cdc25p inactivation". EMBO J. 23 (4): 919–929. doi:10.1038/sj.emboj.7600103. PMC   381010 . PMID   14765109.
  11. Gruneberg, U; Glotzer, M; Gartner, A; Nigg, EA (2002). "The CeCDC-14 phosphatase is required for cytokinesis in the Caenorhabditis elegans embryo". Journal of Cell Biology. 158 (5): 901–914. doi:10.1083/jcb.200202054. PMC   2173158 . PMID   12213836.
  12. Kaiser, BK; Nachury, MV; Gardner, BE; Jackson, PK (2004). "Xenopus Cdc14 alpha/beta are localized to the nucleolus and centrosome and are required for embryonic cell division". BMC Cell Biol. 5: 27. doi: 10.1186/1471-2121-5-27 . PMC   481057 . PMID   15251038.
  13. Kipreos, ET (2004). "Developmental quiescence: Cdc14 moonlighting in G1". Nat Cell Biol. 6 (8): 693–695. doi:10.1038/ncb0804-693. PMID   15303097. S2CID   19764267.
  14. Saito, RM; Perreault, A; Peach, B; Satterlee, JS; van den Heuvel, S (2004). "The CDC-14 phosphatase controls developmental cell-cycle arrest in C. elegans". Nat Cell Biol. 6 (8): 777–783. doi:10.1038/ncb1154. PMID   15247923. S2CID   33369498.
  15. 1 2 3 Mocciaro, A; Schiebel, E (2010). "Cdc14: a highly conserved family of phosphatases with non-conserved functions?". J Cell Sci. 123 (Pt 17): 2867–2876. doi: 10.1242/jcs.074815 . PMID   20720150.
  16. Mocciaro, A; Berdougo, E; Zeng, K; Black, E; Vagnarelli, P; Earnshaw, W; Gillespie, D; Jallepalli, P; Schiebel, E (2010). "Vertebrate cells genetically deficient for Cdc14A or Cdc14B retain DNA damage checkpoint proficiency but are impaired in DNA repair". J Cell Biol. 189 (4): 631–639. doi:10.1083/jcb.200910057. PMC   2872905 . PMID   20479464.
  17. Cho, HP; Liu, Y; Gomez, M; Dunlap, J; Tyers, M; Wang, Y (2005). "The dual-specificity phosphatase CDC14B bundles and stabilizes microtubules". Mol Cell Biol. 25 (11): 4541–4551. doi:10.1128/mcb.25.11.4541-4551.2005. PMC   1140622 . PMID   15899858.
  18. Wu, J; Cho, HP; Rhee, DB; Johnson, DK; Dunlap, J; Liu, Y; Wang, Y (2008). "Cdc14B depletion leads to centriole amplification, and its overexpression prevents unscheduled centriole duplication". J Cell Biol. 181 (3): 475–483. doi:10.1083/jcb.200710127. PMC   2364701 . PMID   18458157.
  19. 1 2 Berdougo, E. 2009. Human Cdc14 phosphatases are not essential for viability and do not regulate mitotic exit. Ph.D. thesis, Weill Medical College of Cornell University.
  20. Bassermann, F; Frescas, D; Guardavaccaro, D; Busino, L; Peschiaroli, A; Pagano, M (2008). "The Cdc14B-Cdh1-Plk1 axis controls the G2 DNA-damage-response checkpoint". Cell. 134 (2): 256–267. doi:10.1016/j.cell.2008.05.043. PMC   2591934 . PMID   18662541.
  21. Ah Fong, A; Judelson, HS (2003). "Cell cycle regulator Cdc14 is expressed during sporulation but not hyphal growth in the fungus-like oomycete Phytophthora infestans". Mol Microbiol. 50 (2): 487–494. doi: 10.1046/j.1365-2958.2003.03735.x . PMID   14617173. S2CID   37314544.
  22. 1 2 3 4 Ah-Fong, AMV; Judelson, HS (2011). "New Role for Cdc14 Phosphatase: Localization to Basal Bodies in the Oomycete Phytophthora and Its Evolutionary Coinheritance with Eukaryotic Flagella". PLOS ONE. 6 (2): e16725. Bibcode:2011PLoSO...616725A. doi: 10.1371/journal.pone.0016725 . PMC   3038932 . PMID   21340037.
  23. Clement, A; Solnica-Krezel, L; Gould, KL (2012). "Functional Redundancy Between Cdc14 Phosphatases in Zebrafish Ciliogenesis". Developmental Dynamics. 241 (12): 1911–1921. doi:10.1002/dvdy.23876. PMC   3508521 . PMID   23027426.
  24. Bizzari, Farid; Marston, Adele L. (2011-06-27). "Cdc55 coordinates spindle assembly and chromosome disjunction during meiosis". The Journal of Cell Biology. 193 (7): 1213–1228. doi:10.1083/jcb.201103076. ISSN   1540-8140. PMC   3216325 . PMID   21690308.
  25. SB, Buonomo; KP, Rabitsch; J, Fuchs; S, Gruber; M, Sullivan; F, Uhlmann; M, Petronczki; A, Tóth; K, Nasmyth (2003-05-01). "Division of the nucleolus and its release of CDC14 during anaphase of meiosis I depends on separase, SPO12, and SLK19". Developmental Cell. 4 (5): 727–39. doi: 10.1016/S1534-5807(03)00129-1 . ISSN   1534-5807. PMID   12737807.
  26. AL, Marston; BH, Lee; A, Amon (2003-05-01). "The Cdc14 phosphatase and the FEAR network control meiotic spindle disassembly and chromosome segregation". Developmental Cell. 4 (5): 711–26. doi: 10.1016/S1534-5807(03)00130-8 . ISSN   1534-5807. PMID   12737806.
  27. Marshall, WF (2009). "Centriole evolution". Curr Opin Cell Biol. 21 (1): 14–19. doi:10.1016/j.ceb.2009.01.008. PMC   2835302 . PMID   19196504.
  28. Mitchell, DR (2007). "The Evolution of Eukaryotic Cilia and Flagella as Motile and Sensory Organelles" . Eukaryotic Membranes and Cytoskeleton. Advances in Experimental Medicine and Biology. Vol. 607. pp.  130–140. doi:10.1007/978-0-387-74021-8_11. ISBN   978-0-387-74020-1. PMC   3322410 . PMID   17977465.
  29. Morgan, David L. (2007). The cell cycle: principles of control. London: New Science Press. pp. 30–31. ISBN   978-0-19-920610-0.
  30. Clemente-Blanco, A; Mayán-Santos, M; Schneider, DA; Machín, F; Jarmuz, A; Tschochner, H; Aragón, L (2009). "Cdc14 inhibits transcription by RNA polymerase I during anaphase". Nature. 458 (7235): 219–22. Bibcode:2009Natur.458..219C. doi:10.1038/nature07652. PMC   4445138 . PMID   19158678.
  31. Shou W, Seol JH, Shevchenko A, et al. (April 1999). "Exit from mitosis is triggered by Tem1-dependent release of the protein phosphatase Cdc14 from nucleolar RENT complex". Cell. 97 (2): 233–44. doi: 10.1016/S0092-8674(00)80733-3 . PMID   10219244.
  32. Wolfe, BA; McDonald, WH; Yates, JR; Gould, KL (2006). "Phospho-regulation of the Cdc14/Clp1 phosphatase delays late mitotic events in S. pombe". Developmental Cell. 11 (3): 423–30. doi: 10.1016/j.devcel.2006.07.016 . PMID   16950131.